专利摘要:
Isolated, recombinantly produced, attenuated, toxic, respiratory Cynthiatia subgroup B with at least one attenuating mutation in the RNA polymerase gene is described. Vaccines comprising such viruses and physiologically acceptable carriers are formulated. Vaccines are used to immunize an individual to induce protection against respiratory Syncitia virus.
公开号:KR20010030630A
申请号:KR1020007002922
申请日:1998-09-15
公开日:2001-04-16
发明作者:우뎀스티븐에이.;시듀모힌더짓에스.;랜돌프밸러리비.
申请人:윌리암 에이취 캘넌, 에곤 이 버그;아메리칸사이아나미드컴파니;
IPC主号:
专利说明:

Attenuated Respiratory Cynthia Virus {ATTENUATED RESPIRATORY SYNCYTIAL VIRUSES}
Respiratory Cynthiatia virus (RSV) is an unfragmented, (-)-sense, single-stranded, enveloped RNA virus. RSV belongs to the paramyxoviride family, pneumovirine subfamily and pneumovirus species. Pneumoviruses have 10 protein-coding cistrons. These proteins in RSV include nucleocapsid protein N, phosphoprotein P, aglycosylated virion matrix protein M, adhesion protein G, fusion protein F, polymerase protein L, nonstructural proteins NS1 and NS2, small hydrophobic protein SH, And transcription elongation factor protein M2.
The genomic RNA of RSV provides two template functions in terms of nucleocapsids: templates for messenger RNA (mRNA) synthesis and templates for antigenome (+) strand synthesis. RSV encodes and packages autologous RNA dependent RNA polymerase. The messenger RNA is synthesized only when the virus peels from the infected cell. Viral replication occurs after synthesis of mRNA and requires continuous synthesis of viral proteins. The newly synthesized antigenome (+) strand serves as a template for making additional copies of the (-) strand genomic RNA.
The polymerase complex executes and achieves transcription and replication by using cis-acting signals in the 3 'region of the genome, in particular the promoter region. Viral genes are transcribed in one direction from genomic templates from 3 'to 5' end. There are always fewer mRNAs produced in downstream genes (eg, polymerase genes (L)) than upstream genes (ie, nuclear protein genes (N)). Thus, there is always a slope due to mRNA excess, depending on the location of the gene relative to the 3 'end of the genome.
RSV is the leading cause of viral pneumonia and bronchitis in infants and young children, resulting in 95,000 hospitalized annually and 4,500 deaths in the United States (Refs. 1,2,3). Serious diseases are most prevalent in infants 6 weeks to 6 months of age and children with underlying diseases (eg, immunodeficiency, congenital heart disease, and tracheal dysplasia).
Two major subgroups A and B of RSV and antigenic variants in each subgroup were identified (4). Multiple variants of each subgroup have been found to spread in the form of epidemics that occur yearly during late autumn, winter, and spring (5). Most children are infected when they are two years old. However, complete immunity to RSV has not been developed and reinfected throughout life (6, 7). Such reinfection is generally limited to mild upper respiratory disease, but often symptoms occur. Reduction in disease severity is associated with two or more previous infections, and in some studies, high levels of serum antibodies suggest that protective immunity to RSV disease accumulates the following repeated infections (2,6). , 8,9,10,11). There is also evidence that a child infected with one of the two major RSV subgroups may be somewhat protected from reinfection with homologous subgroups (12). These observations suggest that it is possible and valuable to develop RSV vaccination that provides sufficient transient immunity for infants and young children to protect against serious disease and death.
Identification of two major subgroups of RSV is based on the reactivity of monoclonal antibodies with F and G surface glycoproteins (4,13) and further described by sequencing (14,15). Both F and G proteins cause neutralizing antibodies and immunization with these proteins provides protection from reinfection in mouse and cotton rat models (16, 17, 18). Most neutralizing antibodies are directed against the F protein. Beeler and Coelingh report that eight of the 16 neutralizing epitopes located on the F protein are conserved in one, but not all, or all 23 virus isolates tested (19). A high degree of sequence homology exists between the F proteins of subgroups A and B (approximately 90% amino acids and approximately 80% nucleotides), but significantly less homology (approximately 50-60% amino acids and approximately 60-70) between G proteins % Nucleotides) (14). Similarly, immunity induced by F protein has more cross protection between subgroups than immunity induced by G protein (16, 17). In mice, human immunity induced by both F and G proteins is believed to be responsible for protection from virus reinfection (20), but CTL responses are considered more important for primary infection analysis (21, 22, 23). M2 (or 22K) protein is believed to be a potent inducer of cytotoxic lymphocytes (CTL) in mice, and CTL recognition of F, N and P proteins is weaker (24, 25). Human CTLs have been shown to recognize F, M2, N, M, SH, and NS2 (or 1b) proteins (26). These data suggest that the F proteins of the viral subgroup are critical immunogens in RSV vaccines and that G, M2, N, M, SH, and NS2 proteins should also be considered as potential vaccine components.
In the case of RSV, no vaccine of any kind is currently available. Therefore, there is a need for the development of vaccines against these human pathogens. Such vaccines must induce an immune response at receptors that prevent severe RSV disease, ie LRD. The qualitative and quantitative aspects of this preferred response are inferred from the facts found in survivors of natural viral infections that are not protected upon reinfection by the same or to a significant extent related viruses, but protected from serious or fatal diseases.
(1) purified individual viral protein vaccine (subunit vaccine); (2) inactivated whole virus preparations; And (3) a number of approaches, including the use of live, attenuated viruses, can be considered an effort to pursue such vaccine development.
Subunit vaccines have the desirable properties that are pure, definable and relatively easy to be produced in large quantities by a variety of means including recombinant DNA expression. To date, viral subunit vaccines, with the exception of hepatitis B surface antigens, generally only live for a short time and / or induce inappropriate immunity, especially at naïve receptors.
The formalin inactivated whole virus preparation of polio (IPV) and hepatitis A has proven safe and efficient. On the other hand, immunization with whole inactivated RSV likewise leads to an unfavorable immune response and / or response profile that causes the vaccinated to worsen or suffer from abnormal disease when subsequently faced with a natural or “wild-type” virus.
Initial attempts to vaccinate young children (1966) used a parenterally administered formalin-inactivated RSV vaccine. Unfortunately, such vaccine attempts in many areas have shown serious adverse reactions-the natural infection of RSV subsequent to the development of serious diseases with abnormal characteristics (27, 28). It has been shown that exposure to formalin treated RSV antigen leads to a malformed or unbalanced immune response profile, and that the vaccinated is prone to RSV disease (29, 30).
Many different live, attenuated viruses have demonstrated distinct effects as a means of achieving immunoprevention. The study of these vaccine candidates for RSV has been intensely long term.
RSV temperature sensitive (ts) variants induced by chemical mutations (31) have been shown to weaken toxicity in rodent and nonhuman primate models (32, 33).
Attenuated ts virus variants have been developed that are useful as vaccines using low temperature adaptation, a process by which viruses are adapted to grow at temperatures below which they generally grow optimally (see 34). Such methods generally result in the accumulation of a number of genetic disorders that provide phenotypic stability by reducing the likelihood that the reversion of one disorder will cause the reversion of the associated phenotype. Maassab has successfully developed a number of ts influenza vaccine candidates widely used in clinical trials using phased low temperature adaptation (35, 36, 37). These variants with attenuated mutations in at least four different genes have been shown to be toxic, immunogenic, and phenotypicly stable.
Belshe and his colleagues developed attenuated, ts strains of paramyxovirus, parainfluenza virus type 3 using cold adaptation (38,39). In this case, cold adaptation is performed by reducing the temperature to 20 ° C. in stage 1 African green monkey kidney cells. Analysis of a number of viral variants cloned from this cold adapted population demonstrated that attenuation and temperature sensitivity levels increased with increasing length of cold adaptation. These variants appear to reduce the likelihood of toxicity in humans, but the temperature sensitive phenotype is somewhat unstable in clinical trials (40).
RSV was successfully cold-adapted to 25-26 ° C. in a number of laboratories in the mid-1960s, but the degree of attenuation was found to be weak in vaccine testing (34,41,42). Maassab and DeBorde (34) indicate that the cause is either that low temperature adaptation is not performed at sufficiently low temperatures or that clones of attenuated viruses that are adequately attenuated are not isolated from genetically mixed cold-adapted virus populations.
Nevertheless, these means of generating attenuated RSV live vaccine candidates are unpredictable because they last for a long time and, at most, depend on selective production, which usually occurs randomly in genomic variants with the desired attenuating toxicity. The resulting virus has the desired phenotype in vitro and even appears to have reduced toxicity in animal models. However, too often they are low- or highly toxic in a human or animal host where they are intended as vaccine candidates.
Thereafter, two live, attenuated RSV variants are produced by cold passage or chemical mutation. These RSV strains have been found to have reduced toxicity in seropositive adults. Unfortunately, they have been demonstrated to have high- or low toxicity attenuation when given to infants with seronegative negatives; In some cases they have been found to lack genetic stability (43,44). Another vaccination with parenteral administration of live virus has been found to be ineffective and this effort has been discontinued (45). In particular, these RSV live vaccines are never associated with disease augmentation observed using the formalin-inactivated RSV vaccine described above.
At present, there is no RSV vaccine administered to humans, but clinical trials are underway using cold-passed, chemically mutated RSV strains designated A2 and B-1.
Derivatives of live wild-type viruses that have been moderately toxic provide significant advantages as vaccine candidates. As live, replicators, they initiate infection at the receptor, during which viral gene products are expressed, processed and presented in terms of the specific MHC class I and II molecules of the vaccinated, which are human and cell-mediated immune responses and natural Elicit a homologous cytokine pattern parallel to the protective immune profile of the survivor of the infection.
This preferred immune response pattern is in contrast to defined responses induced by inactivation or subunit vaccines and are typically limited to human immune surveillance groups. In addition, some formalin inactivated whole viral vaccines, such as the measles and respiratory Cynthiatia vaccines developed in the 1960s, do not provide continuous protection, but also, if the vaccine receptor is later faced with wild-type viruses, Worse, and even fatal disease.
Although live, attenuated viruses have highly desired properties as vaccine candidates, they have proven difficult to develop. The most difficult part is to isolate derivatives of wild-type viruses that have had sufficient replication capacity to infect the receptors and induce the desired immune response profile in an appropriate amount, while losing the possibility of disease generation (ie toxicity).
Historically, this sophisticated balance between toxicity and attenuation has been achieved by serial passage of wild-type virus isolates through different host tissues or cells under variable growth conditions (such as temperature). This process presumably favors the growth of viral variants (mutants) and some have preferred attenuation. Often, additional attenuation is also achieved through chemical mutations.
Such propagation / passage typically results in the emergence of temperature-sensitive, cold-adapted and / or modified viral derivatives in their host range-changes from one or all wild-type, disease-producing viruses-- However, change is associated with attenuation.
Rational vaccine design is aided by a good understanding of RSV, in particular genomic changes responsible for the identification and attenuation of virally encoded virulence determinants.
Summary of the Invention
Accordingly, it is an object of the present invention to identify polymerase gene regions of RSV subgroup B in which mutations cause attenuation of these viruses.
It is a further object of the present invention to generate recombinantly generated RSV subgroup B which introduces such attenuated mutations into these genomes.
It is a further object of the present invention to formulate a vaccine containing a virus that has reduced this toxicity.
Several objects of the present invention discussed below are achieved by the generation and isolation of RSV subgroup B, which is produced recombinantly with at least one attenuating mutation in the RNA polymerase gene and has attenuated toxicity.
At least one attenuating mutation in the RNA polymerase gene is residues 353 (arginine → lysine), 451 (lysine → arginine), 1229 (aspartic acid → asparagine), 2029 (threonine → isoleucine) and 2050 (asparagine → aspartic) Acid) is selected from the group consisting of nucleotide changes that make a change in the selected amino acid.
In another embodiment of the invention, the attenuated virus is used to prepare a vaccine that elicits a protective immune response against wild type virus.
In another embodiment of the invention, an isolated, stranded, antigenomic message sense nucleic acid molecule (or an isolated, stranded genome) having a complete viral nucleotide sequence (whether a wild type virus or a virus attenuated by nonrecombinant means). Sense nucleic acid molecules) are engineered by introducing one or more attenuating mutations described in this application to produce isolated, recombinantly generated attenuated viruses. Such viruses can be used to prepare vaccines that give rise to protective immune responses against wild-type viruses.
In another aspect of the invention, such a complete wild type or vaccine virus nucleotide sequence (and returner sequence) comprises (1) a PCR primer useful for PCR analysis to detect the presence of the corresponding virus in a sample; (2) It is used to design and select peptides useful for ELISA for detecting the presence of the corresponding virus in a sample.
The present invention relates to subgroup B respiratory Cynthiatia virus with at least one attenuating mutation in the RNA polymerase gene. The present invention was completed with government support under the Public Health Service permit. The government has certain rights in the invention.
1 is a flow chart describing the proliferation of RSV 2B functional seed MK7V14b and RSV 3A functional seed MK8V17b.
2 shows the growth and cytopathic effects of RSV 2B at temperatures between 26 ° C. and 36 ° C. in Vero cells.
3 shows the growth and cytopathic effects of RSV 3A at temperatures of 26 ° C. to 36 ° C. in Vero cells.
4 graphically shows the titration results obtained for each passage of RSV 2B and RSV 3A.
5 depicts the growth curves of RSV 2B, RSV 2Bp24G, RSV 2Bp20L, RSV 3A, RSV 3Ap20E and RSV 3Ap20F in Vero cells at 20 ° C. to 40 ° C. temperature.
Figure 6 graphically compares growth after 3-7 days of infection of cotton rats with RSV 2B and RSV 2Bp20L.
Figure 7 compares the relative growth and pathogenicity of RSV 2B and RSV 2Bp20L in seropositive chimpanzees grown over 4 years.
FIG. 8 is a diagram showing virus titers for monkeys infected with RSV 2B ts variants and subsequently parented.
FIG. 9 is a diagram showing virus growth in African green monkey cells infected with RSV 3A ts variant and administered with parental 3A.
10 is a diagram illustrating growth studies in African green monkeys comparing RSV 2Bp33F and 3Ap28F with TS-1.
FIG. 11 shows a genetic map of RSV subgroup B wild type strains named 2B and 18537 (top), intergenic sequence (middle) of these strains, and 68 nucleotide overlap (base) between M2 and L genes. The RSV 2B strain has six fewer nucleotides in the G gene, which encodes two fewer amino acid residues in the G protein, compared to the 18537 strain. The 2B strain has 145 nucleotides in the 5 'trailer region, compared to 149 nucleotides in the 18537 strain. The 2B strain has one or more nucleotides in each of the NS-1, NS-2 and N genes, and one less nucleotide in each of the M and F genes, compared to the 18537 strain.
The first step in identifying attenuated mutations in the L gene of the RSV subgroup B vaccine strain is to generate these strains from wild type strains. The original RSV subgroup B vaccine strain (and subgroup A vaccine strain) is produced by cold adaptation of wild type virus. Cold adaptation involves obtaining live virulence viruses derived from clinical isolates isolated from stage 1 Rhesus monkey kidney cells. These are passaged to Vero cells at 35-36 ° C. for plaque purification. Preferably, Vero cells are passage 133 at passage 133 of Vero cell line CCL81 obtained from American Type Culture Collection (ATCC), Rockville Parkron Drive 12301, 20852, USA. The maintenance medium is preferably 2% FBS, L-glutamine, co-amino acids and MEM at 20 mM Hepes pH 7.5 and the freezing medium is MEM at 10% FBS and 20 mM Hepes pH 7.5.
Inoculating about 1.0 ml of the virus inoculation into the fusion monolayer of Vero cells allows the virus to circulate at an ambient temperature (about 18 ° C. to about 25 ° C.) for about 1 to 2 hours (preferably 70 to 120 minutes, most preferably 90 minutes).
The virus flasks are incubated at about 18 ° C. to about 26 ° C., preferably about 20 ° C. for about 2-15 days. Virus is harvested by transferring the medium and using frozen medium instead. The flask is directly frozen to −70 ° C. and then thawed in a 32 ° C. water bath.
A portion (about 1 ml) was removed from the freeze-thaw lysate and used to inoculate Vero cells; Repeat this process. The remaining freeze-thaw lysate is stored at -70 ° C. This can be used to perform virus titration and plaque purification virus.
For plaque purification virus, freeze-thaw lysates are thawed in a 32 ° C. water bath. Dilute the lysate about 3-5 times in a maintenance medium. 6-well, 24-well, or 96 well plates containing fused Vero cells are washed with phosphate buffered saline. Inoculate the virus dilution into the wells using a size sufficient to cover the bottom of the wells. Virus inoculum is adsorbed at ambient temperature for 90 minutes. Wells are applied 1% methylcellulose in MEM-maintaining medium. Plates are incubated at 32 ° C. for 5 days. Microscopy looking for typical Cynthia plaques is used to mark wells from which isolated plaques are identified. Using a small hole pipette or pipette tip, pick the plaques at the indicated sites and emulsify them in 0.5 ml maintenance medium at 4 ° C. for 1-3 hours. Selected plaques are used to inoculate two 25 cm 2 flasks or 96-well plates containing Vero cell monolayers as described above. The double inoculated flask or plate is placed in maintenance medium. One is incubated at 32 ° C. and the other is incubated at 39 ° C. for 5-10 days. Flasks or plates incubated at 32 ° C. are examined under a microscope for viral cytopathic effect (CPE). Flasks or plates incubated at 39 ° C. are stained by immunoperoxidase assay for RSV specific antigen. Flasks or plates representing RSV antigens that are little or no detectable by CPE and immunoperoxidase staining at 32 ° C. are selected to contain temperature sensitive (ts) variants. Viruses of the selection flasks or plates described above are harvested by freeze-thaw technique. This virus represents plaque purified variants.
Attenuated RSV strains are developed from two parent strains derived from clinical isolates using the cold adaptation just described. Seven ts variants are isolated, four from subgroup B virus (RSV 2B) and three from subgroup A virus (RSV 3A). All seven variants exhibit a temperature sensitive phenotype in Vero cell cultures, each with unique characteristics. All variants had reduced growth in cotton rats but showed different phenotypes. Growth of RSV 2Bp20L, one of the ts variants, has been shown to be attenuated in seropositive chimpanzees. All seven variants have two major neutralizing epitopes.
Cold adaptation of RSV is done in advance at temperatures ranging from 34 ° C.-37 ° C. and decreasing to 25 ° C.-26 ° C. in Stage 1 or diploid cell lines (Bovine Kidney, WI38, and Sercophytecus Monkey Kidney). There have been no attempts to separate a large number of individual variant phenotypes from cold-adapted viruses (34,46,47).
The approach described herein for cold-adapting RSV differs in some important ways from previous attempts. This procedure is initiated using subgroup A and subgroup B of different strains than those previously used. These strains have distinct phenotypic differences between the reference strains. These strains are passaged several times to adapt the virus to Vero cells and plaque purified virus. Viruses are passaged in continuous cell lines, Vero cells, rather than diploid or stage 1 cell lines. A number of temperature change methods are used to provide greater possibilities for the separation of various variant phenotypes.
Unlike previous RSV cold adaptations where cold adaptation starts at 34-37 ° C. and reaches 25-26 ° C., cold adaptation starts at 26 ° C. (because the parent strain has been found to grow well at this temperature) or 22 ° C., The growth temperature is gradually reduced to 20 ° C. The passage method includes both the "slow adaptation" recommendation to very low temperatures proposed by Massab and Deborde (37), and the effort to try a faster and more drastic approach. RNA viruses are mutated at a high frequency that the virus population will contain a number of individual virus variants (48). Thus, various virus variants are isolated from individual flasks at different virus passage levels and from different cold adaptations.
The results are interesting and somewhat unexpected. The rate at which the virus adapts (ie, grows consistently high titers at 20 ° C. temperature) is largely influenced by the virus strain used, suggesting that this is an important host-related factor in adaptation. RSV 2B easily adapts to low temperatures, even with rapid adaptation. In contrast, RSV 3A grows weakly at low temperatures. RSV 3A was eventually cold-adapted using slow pass technology, but faster adaptations seemed hopelessly discontinued. Based on the cold adaptation experience reported by other investigators, ts variants are expected to emerge and eventually become overwhelming viral variants in cold-adapted populations. For example, Belshe and Hissom (41) reported that for parainfluenza virus type 3 adapted to grow at 20 ° C., 80% of plaque purified virus clones were ts by 18 passages and 100% by 45 passages. It is reported to be ts. In this study, even after 38-40 cold passages, including up to 32 passages at 20 ° C., the RSV ts variant remains a minority population. This suggests that the ts and cold-adapted phenotypes cannot be as strongly associated with RSV as in other viruses.
Attenuation levels are an important factor in the development of vaccines for target populations and are particularly important for infants and young children. The virus must be attenuated enough to not cause disease, but must grow enough to induce protective immunity in the vaccine.
Widely recognized markers for attenuation are the ts phenotype and reduced growth in animal models. However, these markers are only approximate and should eventually be tested in the target population. RSV 3A ts variants can be distinguished from RSV 3A parental virus by reduced replication in both nasal and lung. Note that the RSV 3A parental virus grows better in the nasal cavity than the lungs of cotton rats, but virus recovery is similar in both nasal and lung of BALB / c mice. These data suggest that the attenuation observed in cotton rats is due to at least one factor and that this factor is not directly related to the temperature sensitivity observed in vitro. Cotton rats are relatively unacceptable and disease free in RSV growth, indicating that this model is an unreliable factor for human attenuation levels.
Chimpanzees, on the other hand, are very sensitive to RSV infection and develop upper and lower respiratory diseases that are very similar to those seen in humans. In seropositive chimpanzees, RSV 2B parents have been found to cause upper respiratory disease similar to that caused by natural RSV infection in adult humans. The RSV 2Bp20L variant does not grow, which clearly shows that this ts variant attenuates toxicity in acceptable hosts and unacceptable cotton rats. Attenuation levels are best assessed in serum-reactive chimpanzees because previous viral exposure will affect the host response to viral attack. Unfortunately, testing in seronegative chimpanzees is quite difficult due to the limited utility of these animals.
The variants described herein have the desired properties of an immunogenic RSV vaccine virus that is attenuated and phenotype stable in human target populations.
The immunity of the recombinantly generated RSV subgroup B vaccine is measured by monitoring the immune response of the test animal followed by immunization with the vaccine. Test animals include, but are not limited to mice, rats (eg, cotton rats), rabbits, primates such as African green monkeys, chimpanzees, and humans. Methods of introducing immunogens may include oral, parenteral, topical, intranasal or other standard routes of immunization. The immune response of the test subjects is analyzed in four approaches: (a) reactivity of the generated immune serum to rated RSV antigens, known techniques such as enzyme linked immunosorbent assay (ELISA), immunoblasts, radioimmunity Analysis by precipitation and the like; (b) the ability of immune sera to neutralize RSV infectivity in vitro; (c) immune serum ability to inhibit viral fusion in vitro; And (d) protection against RSV infection or serious disease.
Cold-adapted RSV variants can elicit an immune response when administered to a subject without causing significant disease such as respiratory stress or otitis media. As used herein, the term “cold-adapted variant” means an attenuated virus whose toxicity is reduced by proliferation at a temperature below the optimum temperature. Examples of cold-adapted variant viruses are provided above. Cold-adapted variants RSV may be variants of subgroup A such as the group consisting of 3Ap20E, 3Ap20F and 3Ap28F. The cold-adapted variant RSV may be a variant of subgroup B, such as the group consisting of 2Bp33F, 2Bp24G, 2Bp20L and 2Bp34L. Subgroup B virus was sequenced and differences between wild type and variant strains were identified. Mutations causing a less toxic phenotype were analyzed.
Transcription and replication of (-) sense, single-stranded RNA viral genomes, such as RSV subgroup B, is accomplished through enzymatic activity of multimeric proteins acting on the ribonucleoprotein nucleus (nucleocapsid). Naked genomic RNA cannot act as a template. Instead, these genomic sequences are only recognized when they are fully encapsidated by the N protein into the nucleocapsid structure. In this regard, genomic and antigenome terminal promoter sequences are recognized to initiate transcriptional or replication pathways.
All paramyxoviruses require two viral proteins, L and P, for these polymerase pathways to progress. Pneumoviruses, including RSV, also require the transcriptional extension factor M2 to effectively advance transcription. Additional officials may also play a role, including virus-encoded NS1 and NS2 proteins, and host-cell encoded proteins.
However, a great deal of evidence, but not all, performed enzymatic processes involving transcription and replication, including the initiation and termination of ribonucleotide polymerization, capping and polyadenylation of mRNA transcripts, methylation and specific phosphorylation of P proteins. L protein. The major role of L proteins in genomic transcription and replication is supported by large size, susceptibility to mutations, and enriched enzyme levels in transcriptionally active viral complexes (49).
These considerations suggest that the L protein consists of linear arrays of domains whose chain structures incorporate individual functions (50). Indeed, three such defined, individual elements in the (-) sense virus L protein have been identified based on their relevance to the defined functional domains of other well characterized proteins. These include (1) putative RNA template recognition and / or phosphodiester bond forming domains; (2) RNA binding elements; And (3) an ATP binding domain. All previous studies of the L protein of unfragmented (-) sense, single-stranded RNA viruses have revealed these putative functional elements (50).
In short, the present invention is directed to identifying changes in the polymerase gene (L) that cause the virus to attenuate while retaining sufficient viral replication capacity. Attenuation is optimized by moderate mutations in the polymerase gene, which provides the desired balance of replication efficiency: infecting the cells of the vaccinated, so that the viral vaccine can no longer cause disease, and full spectrum of the desired immune response And expresses a sufficient amount of gene product to elicit a profile and retains the ability to regenerate and proliferate sufficiently to maximize the extent of the elicited immune response.
Animal studies demonstrate a reduction in viral replication that is sufficient to avoid disease but is appropriate to elicit the desired immune response. This represents a decrease in transcription, a decrease in gene expression of virally encoded proteins, a decrease in antisense templates and thus a smaller amount of new genome generation. The resulting attenuated virus is significantly less toxic than the wild type.
The attenuated mutations described herein can be introduced into the virus strain by two methods:
(1) Selection of viruses passaged at sub-optimal temperatures to select chemical mutations, temperature sensitive and / or cold-adapted mutations during virus growth in cell cultures to which chemical mutations are added, variants which produce small plaques in cell cultures Conventional means, such as identification of viruses, and heterologous host passage to select host range mutations. These viruses are screened for attenuation of biological activity in animal models. The attenuated virus is nucleotide sequenced of the polymerase gene to identify attenuated mutation sites. Once sequenced, perform method (2).
(2) Preferred means for introducing attenuated mutations comprising the step of generating a predetermined mutation using a site-directed mutation. These mutations are identified by reference to method (1) or to a closely-associated virus for which attenuated mutations are already known. One or more mutations are introduced into the polymerase gene. The cumulative effects of various combinations of cipher and non-cipher changes can also be evaluated.
Mutations for the polymerase gene are introduced into the DNA copy of the viral genome by standard recombinant DNA methods. It may be a wild type or mutated viral genome background (eg, a virus mutated by method (1)) to produce a new virus. Infectious clones or particles containing these attenuated mutations include Sendai virus (51); Measles virus (52); Respiratory Cynthiatia virus 53; Rabies (54); Vesicular stomatitis virus (VSV) 55; And cDNA "rescue" systems that have been applied to a variety of viruses, including the dominant virus 56 (these references are incorporated herein by reference). For RSV relief, see International Patent Application WO 97/12032 (57), published in the United States by designation; This application is incorporated herein by reference.
In short, all mononegavirus rescue systems can be summarized as follows: each of the self-cleaving ribosomes inserted into a suitable DNA-dependent RNA polymerase promoter (eg, a T7 RNA polymerase promoter) and a proliferative bacterial plasmid. This requires cloning DNA that is homologous to the complete viral genome that lies between the sequence (eg, hepatitis delta ribosome). This transcription vector provides an easily manipulated DNA template from which the single-stranded RNS of the viral antigenome (or genome) of which the RNA polymerase (eg, T7 RNA polymerase) has the correct or nearly accurate 5 'and 3' ends. Copies can be faithfully transcribed. The orientation of the viral genomic DNA copy and flanking promoter and ribosomal sequence determine whether the antigenome or genomic RNA equivalent is transcribed. Also required for rescue of novel viral progeny are the viral-specific trans-acting proteins required to encapsulate naked, single-stranded virus antigenome or genomic RNA transcripts in functional nucleocapsid templates :: viral nucleocapsid (N or NP) ) Protein, polymerase-binding phosphoprotein (P) and polymerase (L) protein. These proteins include active viral RNA-dependent RNA polymerase that must be engaged with such nucleocapsid templates to perform transcription and replication.
Trans-acting proteins required for RSV rescue are capsidized protein N, polymerase complex proteins, P and L, and additional proteins, M2, RSV-encoded transcriptional prolongation factors.
Typically, these viral trans-acting proteins arise from one or more plasmid expression vectors encoding the required proteins, but some or all of the required trans-acting proteins contain these virus-specific genes and gene products as stable transformants. Can be produced in a mammalian cell that is intended to be expressed.
Typical environments for (but not necessarily only) rescue include a suitable mammalian cell environment in which T7 polymerase is present for transcription of the genome (or genomic) single stranded RNA from viral genome cDNA-containing transcription vectors. After transcribing together or transcribed over short intervals, this viral antigenome (or genomic) RNA transcript is encapsulated into a functional template by a nucleocapsid protein and cotransfected expression encoding the required virus-specific trans-acting protein Meshes with essential polymerase components produced simultaneously from the plasmid. These events and processes result in prerequisite transcription of viral mRNAs, replication and proliferation of new genomes, and thus generation, ie rescue of new viral progeny.
For rabies, VSV and Sendai rescue, T7 polymerase is provided by recombinant vaccinia virus VTF7-3. However, this system requires rescued viruses to be separated from vaccinia virus by repeating passages in cells or tissues that are not physical or biochemical means or good hosts for poxviruses. For measles virus (MV) cDNA rescue, this requirement is unnecessary by creating T7 polymerase and cell lines expressing viral N and P proteins. The helper cell line is transfected with the genomic expression vector and the L gene expression vector to achieve rescue. The benefits of host-range variants of vaccinia virus, MVA-T7, which express T7 RNA polymerase but do not replicate in mammalian cells, are used to rescue RSV, bypass virus and MV. After co-expression of the essential capsid proteins, the synthetic full length antigenomic viral RNA is capsided, replicated and transcribed by the viral polymerase protein and the replicated genome is packaged with infectious virions. In addition to these antigenomes, genomic analogs have been successfully rescued in the case of Sendai and PIV-3 (58,59).
The rescue system comprises a transcription vector comprising an isolated nucleic acid molecule encoding the genome or antigenome of RSV subgroup B with at least one attenuating mutation in the RNA polymerase gene, and the trans-action required for encapsidation, transcription and replication. Provided is a composition comprising at least one expression vector comprising at least one isolated nucleic acid molecule encoding N, P, L and M2 proteins. The host cell is transformed or transfected with at least two vectors just described. Host cells are cultured under conditions that allow coexpression of these vectors to produce infectious attenuated viruses.
The rescued infectious RSV is first tested for the desired phenotype (temperature sensitive, cold adapted, plaque form, and transcriptional and replication attenuation) by in vitro means.
If an attenuated phenotype of the rescued virus is present, challenge experiments are performed using the appropriate animal model. Non-human primates provide pathogenesis of human disease in preferred animal models. These primates are first immunized with attenuated, recombinantly produced virus, followed by administration of wild type virus. Monkeys are infected by various routes, including but not limited to intranasal or intratracheal inoculation routes (60). Protection of nonhuman primates is measured by criteria such as disease symptoms and symptoms, viral bean envelope and antibody titer. Once the desired criteria are met, the attenuated, recombinantly produced virus is considered a possible vaccine candidate for human testing. A "saved" virus is considered to be "recombinantly produced" for the offspring and later generations of the virus introducing the attenuated mutation.
Although "saved" viruses are less toxic or highly toxic compared to optimal levels for vaccines, this is valuable information in developing such optimal strains.
Optimally, codons containing attenuated point mutations can be stabilized by introducing a second or second and third mutation into the codon without changing the amino acid encoded by the codon containing only the attenuated point mutation. Infectious virus clones containing attenuated and stable mutations are generated using the cDNA "rescue" system described above.
Two major subgroups of human RSV, designated A and B, were identified based on the reactivity of monoclonal antibodies with F and G surface glycoproteins (4). More recently, the A and B strains of RSV strains have been identified by sequencing (14,15). Cattle, sheep, and goat strains of this virus have also been identified. The host specificity of the virus is most clearly associated with G adhesion proteins, which are very different between human and bovine / sheep strains (61, 62) and can be affected, at least in part, by receptor binding.
RSV is the leading cause of serious viral pneumonia and bronchitis in infants and young children. Serious diseases, namely lower respiratory disease (LRD), are most common in infants under 6 months of age. Primary exposure to RSV in non-immune infants occurs most commonly. RSV is additionally associated with asthma and hyperreactive endotracheal tubes, which is an important cause of mortality in "high risk" children suffering from bronchopulmonary dysplasia and congenital heart disease (CHD). It is one of the common viral respiratory infections that make children susceptible to otitis media. In adults, RSV usually manifests as a simple upper respiratory disease; The elderly are comparable to influenza as a factor in the development of severe LRD, especially bacterial bronchitis and pneumonia. The disease is always confined to the respiratory system, except when the immune system is severely compromised, but spreads to other organs. The virus is spread to others by media contaminated with virus-containing respiratory secretions, and infection occurs through the nasal, oral, or conjunctival mucosa.
RSV disease is periodic and the virus is usually isolated only in months corresponding to the winter months, for example, between November and April in Beijing. Viruses are everywhere, and more than 90% of children have been infected at least once by the age of two. Multiple strains spread out together. Although there is no direct evidence of antigen drift (as seen in the case of influenza A virus), sequence studies explaining the accumulation of amino acid changes in the hypervariable regions of the G and SH proteins suggest that immune pressure can advance viral evolution. Hints.
In mouse and cotton rat models, both the F and G proteins of RSV elicit neutralizing antibodies and immunization with only these proteins provides long-term protection from reinfection (16, 17).
In humans, complete immunity to RSV does not occur and reinfection occurs throughout life (6, 7); There is evidence that immune factors will protect against serious diseases. There is evidence that a reduction in disease severity is associated with two or more existing infections and that a child infected with one of the two main RSV subgroups may be somewhat protected when reinfected with homologous subgroups (13), which results in attenuated viruses. It suggests that live vaccines can provide sufficient protection against serious mortality and mortality. Infection of RSV causes both antibody and cell mediated immunity. Although no reduction in upper respiratory disease (URD) has been demonstrated, serum neutralizing antibodies against F and G proteins are associated with protection from LRD in some studies. High levels of serum antibodies in infants are associated with protection against LRD, and administration of intravenous immunoglobulins with high SV neutralizing antibody titers has been shown to protect high-risk children from serious disease (7,10,63). . The role of local immunity, and especially nasal antibodies, is under investigation.
RSV virions consist of the ribonucleoprotein nucleus contained within the lipoprotein envelope. The virions of pneumoviruses are similar in size and shape to all other paramyxoviruses. Under negative staining and electron microscopy, virions are irregular in shape and range in diameter from 150-300 nm (64). The nucleocapsid of this virus is a symmetrical spiral similar to that of other paramyxoviruses, except that the spiral diameter is 12-15 nm rather than 18 nm. The envelope consists of a lipid bilayer containing trans-membrane surface glycoproteins derived from the host membrane and encoded with a virus. Viral glycoproteins mediate adhesion and penetration and form separate virion spikes. All membranes of the paramyxovirus subfamily have hematopoietic activity, but this function is not limited to pneumoviruses because it is absent in RSV but present in PVM (65). Neuroamidase activity is present in members of the paramyxovirus species, rubulavirus species, and absent in rat vorbilivirus and pneumovirus (PVM) (65).
RSV has two subgroups named A and B. The wild type RSV (strain 2B) genome is a 15,218 nucleotide single stranded (-) sense RNA (SEQ ID NO: 1) transcribed into 10 major subgenomic mRNAs. Each of the 10 mRNAs encodes a major polypeptide chain: three are transmembrane surface proteins (G, F and SH); Three are proteins associated with genomic RNA to form viral nucleocapsids (N, P and L); The two are nonstructural proteins (NS1 and NS2) that accumulate in infected cells but are also present in virions in small amounts and can play transcriptional and replication regulatory roles; One is aglycosylated virion matrix protein (M); The remainder is another aglycosylated protein M2, recently known as RSV-specific transcription elongation factor (see FIG. 11). These 10 viral proteins are responsible for almost all viral coding.
The viral genome is encapsidated with the main nucleocapsid protein (N) and associated with phospholipid (P) and large (L) polymerase proteins. These three proteins are considered necessary and sufficient to direct RNA replication of the RSV minigenome encoded with cDNA (66). Further research has shown that M2 protein (ORF 1) is required for transcription through all processes (64). Once the M2 protein is removed, the truncated transcript predominates and no full length genome rescue occurs (64).
Both M (matrix protein) and M2 proteins are internal virion-binding proteins that are not present in the nucleocapsid structure. Due to its similarity with other unfragmented (-)-stranded RNA viruses, the M protein is believed to render the nucleocapsid transcriptionally inactive prior to packaging and mediate binding to the viral envelope. MS1 and NS2 proteins are detected in very small amounts in purified virions and are considered nonstructural at this point. Their function is uncertain, but may be a regulator of transcription and replication. Three transmembrane surface glycoproteins are present in virions: G, F and SH. G and F (fusion) are envelope glycoproteins known to mediate the adhesion and penetration of viruses in host cells. In addition, these glycoproteins represent major independent immunogens (3). The function of the SH protein is unknown, but recent reports suggest that it is associated with the fusion function of the virus (67).
The genomes (2B and 18537) of two wild-type RSV subgroup B strains are now fully sequenced (see SEQ ID NOs: 1 and 3 described below). Genomic RNA is neither capped nor polyadenylated (68). In both virions and intracellulars, genomic RNA is tightly bound to the N protein.
The 3 'end of genomic RNA consists of a 44-nucleotide exogenous leader region that is believed to contain the main viral promoter (68; FIG. 11). After the 3 'genomic promoter region, 10 viral genes are present in sequence 3'-NS1-NS2-NPM-SH-GF-M2-L-5' (see Figure 11). The L gene is followed by a 145-149 nucleotide exogenous trailer region (see FIG. 11). Each gene starts with the conserved 9-nucleotide gene initiation signal 3'-GGGGCAAAU (except for the 10-nucleotide gene initiation signal of the L gene, which is 3'-GGGACAAAAU (with a difference in the underlined portion)). For each gene, transcription begins at the first nucleotide of the signal. Each gene ends at the semiconserved 12-14 nucleotide gene terminus (3′-AGU / GU / A ANNN U / AA 3-5 ), where N is optionally 4 bases, indicating transcription termination and polyadenylation. The first 9 genes are not overlapped and separated by intergenic regions ranging in size from 3 to 56 nucleotides for the RSV B strain (see FIG. 11). The intergenic region does not contain conserved motifs or distinctive features of the secondary structure and has been shown to have no effect before or after gene expression in the minireplicon system (see FIG. 11). The last two RSV genes are overlapped by 68 nucleotides (see FIG. 11). The gene-initiation signal of the L gene is located internally rather than behind the M2 gene. This 68 nucleotide overlapping sequence encodes the last 68 nucleotides of the M2 mRNA (poly-A tail is excluded), and the first 68 nucleotides of the L mRNA.
Ten different species of subgenomic polyadenylation mRNA and a number of polycistronic polyadenylation read-through transcripts are the product of genomic transcription (64). Transcription map studies using UV light mediated genomic inactivation show that RSV genes are transcribed in 3 'to 5' order from a single promoter close to the 3 'end (69). Thus, RSV synthesis is believed to follow the single whole, sequential transcription model proposed for all mononegaviruses (70, 71). According to this model, polymerase (L) contacts the genomic RNA in nucleocapsid form in the 3 ′ genomic promoter region and initiates transcription at the first nucleotide. RSV mRNA is a copy of the same lineage as this gene and is not evidence of mRNA editing or splicing.
Sequence analysis of intracellular RSV mRNA shows that the synthesis of each transcript begins at the first nucleotide of the gene initiation signal (64). The 5 'end of the mRNA is capped with the structural m7G (5') ppp (5 ') Gp (underlined G is the first template nucleotide of the mRNA) and the mRNA is polyadenylated at the 3' end (72). These two modifications are believed to be made transcriptional by viral polymerase. Three regions of the RSV 3 ′ genomic promoter have been shown to be important as cis-acting elements (73). These regions are gene initiation signals located at the first 10 nucleotides (presumably acting as promoters), nucleotides 21-25, and nucleotides 45-53 (73). Unlike other paramyxoviruses such as measles, Sendai and PIV-3, the remainder of the leading and non-coding regions of the NS1 gene of RSV has been found to be highly resistant to insertion, deletion and substitution (73).
Additionally, by saturation mutations in the first 12 nucleotides of the 3 'genomic promoter region (each base independently replaced by the other three bases and compared in transcription and copying efficiency), the U-region located at nucleotides 6-10 It was shown to be very resistant to substitution (73). In contrast, the first 5 nucleotides are relatively resistant to many substitutions and at position 4 two of them have excessive regulatory mutations resulting in a 4-20 fold increase in RSV-CAT RNA replication and transcription. Using a non-cistronic minireplicon system, gene start and gene end motifs have been found to be signals for mRNA synthesis and exhibit the nature of self contained and mostly independent linking sequences (74).
The L gene initiation signal lies at 68 nucleotides upstream of the M2 gene-terminal signal, resulting in gene overlap (see FIG. 11) (64). The presence of the M2 gene-terminal signal in the L gene results in early termination at high frequency of L gene transcripts. Full length L mRNA is produced when less abundant and the polymerase does not recognize the M2 gene-terminal motif. This results in lower transcription of L mRNA. Genetic overlap does not seem to match the linear sequential transcription model. It is not known whether the polymerase outside the M2 gene jumps back to the L gene-start signal or is the second, internal promoter for L gene transcription (64). It is also possible to access the L gene by a small fraction of polymerase that does not initiate transcription in the M2 gene-start signal and to slide the M2 gene into the L gene-start signal.
The relative amount of each RSV mRNA decreases with the distance of the gene from the promoter, presumably due to polymerase departure during sequential transcription (69). Gene overlap is the second mechanism that reduces the synthesis of full length L mRNA. In addition, certain mRNAs have properties that reduce translational efficiency. The start codon of the SH mRNA is the suboptimal Kozak sequence, but the G ORF starts at the second methionyl codon of the mRNA.
RSV RNA replication is believed to follow the model proposed in studies with vesicular stomatitis virus and Sendai virus (70, 71) (64). This entails changing from a terminator-initiated mode of mRNA synthesis to an anti terminator readout mode. It synthesizes (+) sense replication-intermediate (RI) RNA, which is an exact complementary copy of genomic RNA. It also serves as a template for the synthesis of progeny genomes. Mechanisms involving switches in an anti-terminator mode are proposed to involve cotranscriptional encapsidation of neonatal RNA by N proteins (70, 71). Like other nonfragmented (-) stranded RNA viruses, RNA replication in RSV relies on ongoing protein synthesis (75). Expected RI RNA is detected for standard virus and RSV-CAT minigenomes (64, 75). RI RNA is intracellularly 10-20 times less abundant than the progeny genome for both standard and minigenome systems. Nucleotide sequences of the various wild type, vaccine and return RSV strains (+ strand, antigenome, message sense), and deduced amino acid sequences of RNA polymerase (L protein) of these RSV viruses are described below with appropriate reference numbers. :
Viral nucleotide sequence L protein sequence
Wild type
2B SEQ ID NO: 1 SEQ ID NO: 2
18537 SEQ ID NO: 3 SEQ ID NO: 4
vaccine
2B33F SEQ ID NO: 5 SEQ ID NO: 6
2B20L SEQ ID NO: 7 SEQ ID NO: 8
Returning body
2B33F TS (+) SEQ ID NO: 9 SEQ ID NO: 10
2B20L TS (+) SEQ ID NO: 11 SEQ ID NO: 12
Note that the sequence listing lists "DNA"; This is necessary to provide the antigenome message sense RNA in detail (sequences that repeat with "RNA" may be deleted in each "T" sequence).
Each RSV viral genome encodes a 2,166 amino acid long L protein. Genome length and other nucleotide information is as follows:
Viral genome
Wild type length L initiation codon L termination codon
2B 15218 8502-8504 15000-15002
18537 15229 8509-8511 15007-15009
vaccine
2B33F 15219 8503-8505 15001-15003
2B20L 15219 8503-8505 15001-15003
Returning body
2B33F TS (+) 15 219 8503-8505 15001-15003
2B20L TS (+) 15 219 8503-8505 15001-15003
As described in Example 8 below (particularly Tables 21 and 22), the main potential attenuation sites of the L protein of RSV subgroup B are as follows: amino acid residue 353 (arginine to lysine), 451 (lysine to arginine) , 1229 (aspartic acid-asparagine), 2029 (threonine-isoleucine) and 2050 (asparagine-aspartic acid). Nucleotide changes responsible for these amino acid changes are not limited to those described in Example 8 below; All changes in nucleotides that result in codons translated into these amino acids are also within the scope of the present invention.
The attenuated RSV subgroup B virus of the present invention exhibits significantly reduced toxicity compared to wild-type viruses that infect human and animal hosts. The degree of attenuation is such that the symptoms of infection do not appear in most immunized individuals, but induce the desired immune response profile in the vaccinated subject while retaining sufficient replication capacity for the virus to be infectious to the vaccinated subject.
The attenuated RSV subgroup B virus of the invention can be used in vaccine formulations. To this end, the attenuated virus is adjusted to an appropriate concentration and formulated with a suitable vaccine adjuvant, diluent or carrier. Physiologically acceptable media can be used as the carrier. These include, but are not limited to, suitable isotonic media, phosphate buffered saline, and the like. Suitable adjuvants include, but are not limited to, MPL (3-O-decylated monophosphoryl lipid A; RIBI ImmunoChem Research, Inc., Hamilton, Montana, USA) and IL-12 (Genetics Institute, Cambridge, Mass., USA) It doesn't work.
In one aspect of the invention, formulations comprising attenuated virus are considered useful as vaccines. Attenuated viruses can be mixed with cryoprotectant additives or stabilizers such as proteins (eg albumin, gelatin), sugars (eg sucrose, lactose, sorbitol), amino acids (eg sodium glutamate). This mixture is kept in liquid phase or dried or lyophilized for transportation and storage and mixed with water just prior to administration.
Formulations comprising the attenuated virus of the present invention are useful for immunizing humans or animals that induce protection from infection by wild-type equivalents of the attenuated virus. Accordingly, the present invention provides a method of immunizing a subject to induce protection from infection by RSV subgroup B virus by administering to the subject an effective immunological amount of a vaccine formulation injecting a virus in a less toxic form as described above.
Sufficient vaccine should be administered to the subject at an appropriate frequency of induction to elicit an immune response. The skilled person will readily be able to determine such amounts and dosages. Administration can be in existing effective forms such as intranasal, parenteral, oral, or topical application to mucosal surfaces, such as intranasal, oral, ocular, vaginal or rectal surfaces, such as aerosol sprays. Preferred means of administration is intranasal administration.
In another embodiment of the invention, an oligonucleotide probe ((+) strand antigenome message sense or (-) using an isolated nucleic acid molecule having the complete viral nucleotide sequence of the wild-type virus, vaccine virus or return virus is described herein. Strand complementary genomic sense) is generated and the peptide (only (+) strand antigenome message sense) is expressed, which is used to detect the presence of wild-type virus, vaccine strains and / or reverter strains in body fluids and tissue samples. Nucleotide sequences are used to devise highly specific and sensitive diagnostic tests for detecting the presence of viruses in a sample.
Polymerase chain reaction (PCR) primers are synthesized into sequences based on the viral wild type, vaccine or reverter sequences described herein. The test sample is followed by RNA reverse transcription followed by PCR amplification of selected cDNA regions corresponding to the nucleotide sequences described herein with nucleotides distinct from the restricted viral strains. Amplified PCR products are identified on gels and their specificity is confirmed by hybridization with specific nucleotide probes.
ELISA tests are used to detect the presence of antigens of wild type, vaccine or reverter virus strains. Peptides are designed and selected to contain one or more unique residues based on the wild type, vaccine, or return sequence described herein. These peptides are coupled to hapten (eg keyhole limpet hemocyanin (KLH)) and used to immunize animals (eg rabbits) for the production of monospecific polyclonal antibodies. Selection of these polyclonal antibodies, or combinations of polyclonal and monoclonal antibodies, can be used in "capture ELISA" to detect antigens produced by viruses.
The variant RSV samples described herein were prepared by the American Type Culture Collection of Rockville Parkron Drive 12301, 20852, USA, March 19, 1992, by the applicant under the Budapest Treaty on Microbial Deposits for Patent Procedures ("Budapest Treaty"). ATCC). The virus was deposited with the following ATCC accession numbers: 2Bp33F (VR 2364), 2Bp24G (VR 2370), 2Bp20L (VR 2368), 2Bp34L (VR2365), 3Ap20E (VR 2369), 3Ap20F (VR 2367), and 3Ap28F (VR 2366). ). In addition, the 2B wild type RSV virus sample was deposited by Applicant under the Budapest Treaty to the American Type Culture Collection of Rockville Parkron Drive 12301, 20852, Maryland, USA, on August 21, 1997, ATCC accession number is VR2586.
Due to the sequence information for these deposited subgroup B strains and the various strains provided herein, the site-directed mutations and rescue techniques described above for introducing mutations (or wild type genotype recovery) into all subgroup B strains described herein These strains can be used and additional strains can be made from the panel of mutations described in Tables 21 and 22 below.
For a better understanding of the invention, the following examples are described. The examples are illustrative only and are not intended to limit the scope of the invention.
Standard molecular biology techniques are used according to the protocol described by Sambrook et al. (76).
Example 1
Passage and Identification of RSV 2B and RSV 3A Parents
RSV 2B and RSV 3A parent strains are isolated and passaged under conditions useful as clinical research material in qualified cell lines.
Dr. Robert Belshe (St. Louis University Health Science Center, St. Louis, Missouri) isolated two RSV strains, 20648 and 23095, from a nasal sample taken from a sick child. These viruses were later recovered from the original frozen nasal specimen samples and passaged to stage 1 hemolytic monkey kidney (PRMK) cells 2-3 times and then sent to the applicant.
Isolate 20648 (subgroup B) was renamed to RSV 2B. Virus is passaged 7 times at 35 ° C. in PRMK cells, twice at 35 ° C. in Vero cells and 3 times (6 passages) plaques at 36 ° C. in Vero cells. The virus is amplified two additional times in Vero (36 ° C.), the stock is filtered through a 0.2 m filter and then amplified twice in Vero cells. Master seeds (RSV 2B, MK7 V12b), intermediate functional seeds (RSV 2B, MK7 V12b) and functional seeds (RSV 2B, MK7 V14b) are generated. See FIG. 1.
The isolate 23095 (subgroup A) is renamed RSV 3A. RSV 3A is passaged 8 times to 35 ° C. PRMK cells. This is followed by two passages at 35 ° C. Vero and six times at 36 ° C. Vero cells, including three plaque purification steps. The virus is passaged six times to 36 ° C. Vero cells, including a 0.2 m filtration step. Master seeds (RSV 3A, MK8 V15b), intermediate functional seeds (RSV 3A, MK8 V16b), and functional seeds (RSV 3A, MK8 V17b) are generated. See FIG. 1.
Subgroup specificity of RSV 2B and RSV 3A master seeds is confirmed using subgroup specific monoclonal antibodies. Viral stocks are believed to be free of microbial contaminants and adventitious agents.
The F, N, and G proteins of RSV 2B and RSV 3A stock and reference RSV strains A2, Long, and 18537 are analyzed by radioimmunoprecipitation (RIP) and Western blot procedures using monoclonal antibodies. The F1 subunits of the RSV subgroup B strain, 2B and 18537 migrate faster on SDS-polyacrylamide gels than the F1 subunits of the RSV subgroup A strain, 3A and Long. No differences were observed in the migration of N proteins of RSV 2B and 3A strains and reference strains. In RIP gels, G protein appears in two bands at approximately 80-90 kD and approximately 45 kD. 80-90 kD bands of RSV 3A and Long move together; The 80-90 kD band of RSV 2B also appears to move with subgroup A, rather than the faster RSV 18537 (subgroup B1). This suggests that RSV 2B may be a member of the B2 subgroup described by Akerlind (77). In Western blots, the relative proportions of the 80-90 kD and 45 kD bands are roughly consistent with RSV Long, A2, 2B, and 18537 grown in Vero cells, but the staining of the 80-90 kD band of RSV 3A is significantly greater, This shows a difference in the processing of the G protein of this strain when growing in Vero cells. These data show that the estimated M r for RSV 2B and RSV 3A strains is consistent with the subgroup classification of RSV, but these strains do not match the original RSV reference strain.
The growth of RSV 2B, RSV 3A and RSV A2 in mice and cotton rats is compared. Both RSV 2B and RSV 3A replicate weakly in Balb / c mice compared to the RSV A2 reference strain. Consistent recovery of RSV 2B and RSV 3A can only be obtained at the highest inoculation used (10 6.0-6.2 PFU) and is similar to the recovery of RSV A2 at 100-fold lower inoculation bacteria (10 4.3 PFU). In contrast, the growth of RSV 2B in the nose and lungs of cotton rats is similar to that of RSV A2. Growth of RSV 3A in the nose is similar to other strains; Growth in the lungs is quite weak. In both mouse and cotton rat growth data, RSV 2B and RSV 3A have significantly different in vivo growth characteristics than RSV A2 reference strains and differ from each other.
Example 2
Low temperature adaptation of RSV
To select an appropriate starting temperature for cold adaptation of RSV, the growth of RSV 2B and RSV 3A relatives in Vero cells ranging from 26 ° C. to 36 ° C. is compared. Cells are infected with 0.4 MOI and virus yield and CPE are monitored for 4 days. The results shown in Figures 2 and 3 showed similar kinetics and yield for the two virus strains grown at 30 ° C, 32 ° C and 36 ° C. At 26 ° C., virus growth drops below growth at the highest temperature by about 24 hours. The limiting factor to achieve optimal titers is believed to be viral CPE, which occurs earlier at the highest temperature. For both RSV 2B and RSV 3A, optimal titers are achieved while maintaining the culture at 30 ° C. At this temperature, lower levels of CPE sustain viral growth and propagation for a long time. The results suggest that these RSV strains have already been well adapted to grow at 30-36 ° C. The optimum temperature of 26 ° C. is chosen as the starting temperature for cold adaptation, at which the virus growth is suboptimal and therefore some culling pressure for cold adaptation is applied.
Cold adaptation is initiated on virus stock RSV 2B (passage MK7 V14) and RSV 3A (passage MK8 V14). In order to maximize the likelihood of recovering adequately attenuated variants from these cold-adapted populations, two different viral flasks are independently passaged using each of the three different low temperature adaptations. This gives a total of six cold-adapted RSV 2B populations and six RSV 3A. Virus is passaged to 25 cm 2 flasks containing aggregated Vero cell monolayers. At each passage, replace the maintenance medium (MEM / 2% FBS / 20mMHepes 10 ml) in an infection flask with a reduced volume of freezing medium (MEM / 10% FBS / 20 mM Hepes 10 ml) and fast-freeze at -70 ° C. The virus is then harvested by thawing at 32 ° C. To infect the next passage, 1 ml of freeze-thaw lysate was transferred to a new flask of fusion Vero cells, the virus was adsorbed at room temperature (20 ° C.-22 ° C.), and the flask was maintained in MEM / 2% FBS /. Incubate at 20mMHepes) at the appropriate temperature (ie 26 ° C, 22 ° C, 20 ° C) in a water bath.
Titration is performed at 32 ° C. in each freeze-thaw lysate and the remaining material is stored at −70 ° C. for future separation of virus variants. Three passages are used. Flasks E and F are adapted “slowly” by starting four passages at 26 ° C. two days, then passage once weekly until the titer is relatively stable or increased. Viruses are passaged weekly at 22 ° C. until finally high titers are achieved and finally maintained every 1-2 weeks at 20 ° C. Flasks G, H and I are adapted by more appropriate methods. Viruses are passaged twice at 3 ° C. at 26 ° C., then weekly at 5 ° C. at 22 ° C. and finally maintained every 1-2 weeks at 20 ° C. Flasks J and L start 5 times per week at 22 ° C. and are adapted “quickly” with passages at 1-2 ° intervals at 20 ° C. Actual passage conditions and titration results are shown in Tables 1 and 2 and summarized in Table 3. The titration results obtained at each passage are shown graphically in FIG. 4. Titration results demonstrate the effect of the strain on the rate of adaptation. For RSV 2B, all three low temperature adaptations eventually produce high viral titers when the flask is kept at 20 ° C. RSV 3A, on the other hand, is adapted to grow at 20 ° C. using the “slow” method (E, F), but faster adaptation leads to a steep drop in virus growth. The passage of these cultures (3A: H, I, J, L) is stopped.
To select cold-adapted virus populations for accumulation of ts variants, the virus taken in each cold-adapted flask for 5 and 17 weeks is tested for plaque formation efficiency (EOP) at 39 ° C. versus 32 ° C. As can be seen from Table 4, in most cases the plaque formation efficiency of cold passage viruses is relatively high at 39 ° C. (≧ 0.2) and is similar to the values obtained for the parental virus control (≧ 0.6). The results show that cold-adapted virus populations do not ts predominantly over 17 cold passages, except for flask RSV 3A-F, where possible.
After further cold passage, temperature sensitive variants are isolated by plaque purified virus from each cold-adapted flask. Plaque purified variants are initially identified by relatively weak growth (lower titer or smaller plaque size) at 39 ° C. versus 32 ° C. In these assays, as shown in Table 5, the percentage of plaque purified virus that can be clearly identified as temperature sensitive ranges from 0% to 40% plaque selected. Many individual flasks (2B-H, 2B-L, 3A-E, 3A-F) appear to contain relatively high% ts phenotypes, and in some cases the percentage of ts variants increases with time. However, the ts variant is not considered to be the dominant variant over a cold passage period of up to 42 weeks.
In short, the cold passages of RSV 2B and RSV 3A result in cold adaptation of the virus based on its ability to grow stably at 20 ° C. with consistently high yields. EOP analysis and ts variant isolation rates indicate that although ts variants occur in cold-adapted virus populations, they are not predominant species.
Example 3
Vaccine Candidate Selection in In Vitro Studies
Ts variants for vaccine candidates are further selected and selected based on the degree of temperature sensitivity in vitro, attenuation in animal models (including mice, cotton rats, and chimpanzees), and neutralization epitope retention.
During the 39 weeks of cold adaptation, the total 13 RSV 2B and 6 RSV 3A ts variants are plaque purified twice and further characterized. EOP comparisons at 37/32 ° C., 39/32 ° C. and / or 40/32 ° C. indicate that these variants reduce plaque efficiency at higher temperatures and indicate a temperature sensitive range (see Table 6).
Prior to completing isolation of all 19 variants described above, the 4 variants, RSV 2Bp24G, RSV 2Bp20L, RSV 3Ap20E, and RSV 3Ap20F groups are isolated from the first set of plaque purified virus for preliminary characterization. To see the actual virus growth curves, Vero cells are infected with 2 MOI with these 4 variants and incubated at 20 ° C., 32 ° C., 37 ° C. and 40 ° C. for 7 days. The results shown in FIG. 5 show that all four variants are cold-adapted and temperature sensitive, which shows a faster and higher rise in titer in cultures cultured at 20 ° C., and cultures at 37 ° C., 39 ° C., and 40 ° C. Reduced or absent viral growth in cultured cultures. Based on the degree of temperature sensitivity shown in EOP and growth studies, subgroup A and subgroup B variants, RSV 2Bp20L and RSV 3Ap20E, are selected to perform additional preliminary experiments on phenotypic stability and growth in mice.
Infectivity and immunity of RSV 2Bp20L and RSV 3Ap20E are evaluated in Balb / c mice. Virus growth is measured in nasal lavage and lung samples collected 4 and 5 days post infection and serum neutralizing antibody titers are measured 32 days post infection. The results are shown in Table 7. Growth and immunity of parental viruses are very low, but detectable. On the other hand, no virus was recovered and no neutralizing antibody was detected after inoculation with the ts strain, indicating that these strains were highly toxic in mice.
Of the 19 ts variants finally isolated, 4 RSV 2B and 3 RSV 3A variants are selected for further in vitro and in vivo characterization. These variants include three variants isolated at later time points, in addition to the original four variants described above. Selection criteria included the demonstration of a clear ts phenotype at both 37 ° C. and 39 ° C., the appearance of both subgroups, and various passage methods and number of passages. These 7 ts variants are third plaque purified and amplified to make small working stocks. These passages are summarized in Table 8. Initial analysis of these variant strains showed plaque formation efficiency versus plaque morphology in Vero cells at 32 ° C, 37 ° C, and 39 ° C (Table 9), and growth in 32 ° C, 37 ° C, 39 ° C and 40 ° C Vero cells (Table 10). At 37 ° C. and 39 ° C., the EOP decreases and small and medium plaques predominate, indicating that the variant is ts. The discovery of some "wt" plaque size return is seen for all variants except RSV 2Bp34L and RSV 3Ap20F.
In growth studies, Vero cells are infected with a virus strain at 0.2 MOI and virus yield is measured 4 days after infection. Comparison of virus yield in Vero cells at various temperatures demonstrates that the viral yield, expressed as PFU / cell, is significantly reduced at higher temperatures (37 ° C., 39 ° C., 40 ° C.). In some cases, viral yield is somewhat reduced at 32 ° C. compared to parent strain, which indicates growth decay at 32 ° C. This is consistent with the smaller plaque size observed in 32 ° C. EOP analysis (Table 9). For all strains, at least one plaque is detected in cells incubated at 39 ° C. or 40 ° C., suggesting that there is some return. Both EOP and virus yield studies demonstrate that these seven isolates possess varying levels of temperature sensitivity and can range in attenuation levels.
The retention of neutralizing epitopes was examined by comparing the reactivity of the two variants and the parent strains with two polymeric monoclonal antibodies showing antigenic sites A and C on the F protein described by 19-Beeler and Coelingh (1989) (Table 11). Both antibodies can similarly neutralize all virus strains at high dilution, indicating that the neutralizing epitopes are complete.
Example 4
Growth of Variant Strains in Animal Models
Growth and immunity of seven ts variant strains are evaluated in cotton rats. Rats are inoculated intranasally with each variant and lungs and nasal turbinates are harvested 4 days post infection for virus titration. Serum is collected from the same set of rats 20 days after infection to test for neutralization and EIA antibody responses. A summary of viral titration and immune results is shown in Table 12. RSV 2B grows well in the nose and lungs, but the growth of all 4 RSV 2B ts variants is very weak. Of the variants, both RSV 2Bp33F and RSV 2Bp24G show less attenuated phenotypes than RSV 2Bp20L and RSV 2Bp34L, which show slightly higher levels of replication and 100% infection rate. RSV 3A parent and ts variant strains grow well in the nasal turbinates but weakly in the lungs. The titer of the RSV 3A ts variant is lower than the parent strain, indicating that the ts variant is somewhat more attenuated than the parent virus. Neutralizing and EIA-F antibody titers are measured in the serum of rats infected with RSV 2B and RSV 3A parent and ts variant strains. Neutralizing and EIA-F antibody titer levels are low for RSV 2B ts variants, consistent with the low level of viral replication shown. Interestingly, titers from animals infected with RSV 2Bp33F are higher than expected with low titers, and this virus may exhibit moderate attenuation levels. Neutralization and EIA-F antibody titration on all RSV 3A ts variants demonstrated that these variants are highly immune, consistent with high levels of replication in nasal tissues.
Growth of RSV 2Bp20L is further assessed in cotton rats 3 to 7 days after infection to determine if the virus harvest failure is due to shift in peak titer time point. RSV 2B is used as a positive control (see FIG. 6). Growth kinetics of RSV 2B is typical of other RSV strains; Peak titers occur at day 4 and 5 in nasal turbinates and at day 4 in lungs. These results demonstrate the use of four days as the optimal collection date for parental weeks. RSV 2Bp20L is not detected in the lung and little plaque is seen in nasal turbinate titrations on days 3, 5, 6, and 7, demonstrating that the attenuation of this virus is not merely by early or late growth peaks.
Relative growth and immunity of RSV 2B and RSV 2Bp20L in four-year seropositive chimpanzees are compared. Two chimpanzees are infected intranasally with RSV 2B 10 4.0 and 10 5.0 , and two chimpanzees are infected with RSV 2Bp20L as well. The results are shown in Tables 7 and 13. Two chimpanzees infected with RSV 2B developed mild upper respiratory infections, including runny nose and sneezing. Both chimpanzees spread the virus three to seven days after infection. The amount of virus spread is high and propagation is faster in chimpanzees infected with high amounts of RSV 2B. No chimpanzees inoculated with RSV 2Bp20L show any clinical disease symptoms or do not transmit the virus. In all four chimpanzees, chemical and hematology tests showed no significant findings. Serum neutralization and EIA-F, Ga, and Gb antibody titers are increased significantly to 14 and 21 days after infection with RSV 2B. No increase in antibody titer was observed in chimpanzees inoculated with RSV 2Bp20L. The results show that in seropositive chimpanzees, RSV 2B parental is infectious and immune, while RSV 2Bp20L variant is highly toxic.
Example 5
Dosing test in cotton rat model
Further experiments are performed in cotton rats to assess the efficacy of RSV 2B and 3A ts variants that prevent infection upon administration of reference strains of homologous subgroups (RSV 18537 / subgroup B and RSV A2 / subgroup A). Cotton rats (8 / group) are inoculated intranasally with each RSV ts variant. For virus titration, nasal turbinates and lungs are harvested 4 days after infection from 4 rats / group. At 6 weeks of infection, the remaining rats are bleeded for neutralization and EIA-F titers and then administered the appropriate reference RSV strain. Four days after administration, nasal turbinates and lungs are removed for viral titration. The results are shown in Tables 14 and 15.
As discussed above and shown in Table 12, the growth of all 4 RSV 2B TS variants is very weak compared to the parental RSV 2B strain. Neutralization and EIA antibody titers induced by RSV 2Bp33F and RSV 2Bp24G are relatively high despite poor virus recovery, presumably indicating moderate levels of attenuation for both variants. The level of protection against virus attack reflects neutralizing antibody response levels and is high for RSV 2Bp33F and RSV 2Bp24G, moderate for RSV 2Bp20L and ineffective for RSV 2Bp34L. All RSV 3A strains grow in the nasal turbinates but demonstrate high levels of growth loss in the lungs. The titers of neutralizing and EIA antibodies are high and all rats are fully protected from virus attack.
The results demonstrate that the growth of attenuated strains induces protective immunity from viral attack, suggesting that these strains may be useful as vaccines. The most likely cause of failure to protect against vaccination with the RSV 2Bp34L strain is that the virus did not grow most likely due to high attenuation levels. Because cotton rats are less sensitive hosts than humans, the failure to protect these strains does not imply that 2Bp34L is not effective as a human vaccine.
Example 6
Dosing Experiments in an African Green Monkey Model
The growth, immunity, and efficacy of ts variant strains RSV 2Bp33F, 2Bp24G, 2Bp20L, 3Ap20E, 3Ap20F and 3Ap28F in African Green Monkey (AGM) are evaluated. AGM is more susceptible to infection of human RSV than cotton rats, and the nature of the infection may be more relevant to what is seen in humans due to a closer phylogenetic relationship. Each of the two AGMs is inoculated intranasally and intratracheally with each variant virus 10 6 . Viral growth is assessed by nasal lavage and bronchial lavage. Neutralization and EIA antibody responses are tested approximately 0, 1, 2, 3, 4, 6 and 8 weeks after infection. Eight weeks after infection animals are administered parental 10 6 PFU via the intranasal and tracheal route. Virus growth and antibody response are assessed as described above.
Growth of RSV 2B and 3A parent strains can be seen in FIGS. 8 and 9: vaccine controls. Both virus strains grow to high titers in both the nose and lungs. Runny and radiograph evidence of viral pneumonia can be blown in one control monkey (032B) infected with RSV 2B, demonstrating that RSV can cause disease in AGM. These results show differences in these infectious properties in AGM vs. Cottonrat models where no disease is observed and RSV 3A cannot replicate in the lungs. The lack of RSV's parental disease in three of the four monkeys suggests that AGM is not a sensitive host such as humans.
Virus titrations for each monkey infected with the RSV 2B ts variant followed by parental administration are shown in FIG. 8. RSV 2Bp33F grows low in nasal washes in one of the two monkeys, and RSV 2Bp24G grows low in nasal washes or lungs in both monkeys. RSV 2Bp20L cannot grow. In AGM, where the RSV 2B ts variant grows, the monkey is partially protected against parental administration. Tables 16 and 17 provide the antibody titration results obtained after vaccination of each monkey (Table 16) and after virus challenge (Table 17). The results show that in monkeys with virus growth, low levels of neutralization and EIA antibody titers are observed up to 2.5 weeks after infection. After administration of the parent strain, antibody titers increase by one week faster in vaccinated monkeys with antibody titers prior to administration than in non-sera-vaccinated animals or unvaccinated controls. This demonstrates that vaccination with these ts variants is sufficient to prime the immune system and induce protection against viral attacks. Because these monkeys are not as susceptible to infection as humans, the growth and failure of effective immunization of attenuated virus does not imply that the virus is not effective in sufficiently sensitive hosts (ie, serum-reactive negative infants).
Virus growth in AGM infected with RSV 3A ts variant and administered with 3A parent strains is shown in FIG. 9. All three RSV 3A ts variant strains have attenuated growth, with the highest to lowest order of attenuation: 3Ap28F> 3Ap20E> 3Ap20F. Vaccination of all three ts variants provides excellent protection against viral attacks. For monkeys vaccinated with the RSV 3A ts variant, the antibody response is shown in Table 18, and the response following viral challenge is shown in Table 19. In all vaccinated AGMs except monkeys given RSV 3Ap28F, low levels of neutralization and EIA antibody titers are detected from 3 weeks post vaccination. Following administration of the parent strain, all vaccinated monkeys rise 4 weeks faster than unvaccinated controls and are completely or partially protected from infection, demonstrating that vaccination primes and protects the immune response. This includes AGM in which antibody responses are not detected after vaccination, indicating that serum antibody response measurements do not sufficiently represent protective immune levels.
Results from the AGM study demonstrate that all 6 ts variants tested have attenuated toxicity. Vaccination with variants that can replicate in these monkeys is effective in blocking infection of attack viruses.
Example 7
Attenuation degree
RSV ts variant, TS-1, was obtained from Brian Murphy, NIH. This ts variant was originally derived from the RSV A2 strain by chemical mutations and was tested in clinical trials in serum-reactive negative human infants in the 1970s. The results of these experiments indicate that TS-1 causes low levels of disease (nasalitis and otitis media) in infants that are less toxic and less detectable. In addition, the ts phenotype of TS-1 partially restores the following growth in humans. To assess the relative attenuation levels of RSV 2A and 3B variants in vivo and to demonstrate the differences between those variants and those used by others in previous clinical trials, growth of TS-1 variants and RSV 2B and 3A ts variants was performed. A comparison experiment was performed. Cottonrat study results are shown in Table 20 and can be compared directly with Cottonrat data shown in Tables 14 and 15. The TS-1 variant is less toxic than the RSV 2B and 3A ts variants, which is most clearly seen by comparing growth in the lungs.
Growth studies were performed in African Green Monkeys (AGM) comparing RSV 2Bp33F and 3Ap28F with TS-1 and the results are shown in FIG. 10. Monkeys are infected with intranasal (TS-1 and 2Bp33F) or intranasal + intratracheal (3Ap28F) viruses. Virus is recovered from one of four monkeys infected with 2Bp33F and two of four monkeys infected with 3Ap28F. Titers are relatively low in two cases, indicating that the virus has attenuated toxicity. In contrast, all four monkeys inoculated with TS-1 recover relatively high titers of virus. In two of four monkeys, TS-1 titer levels are the same as seen in monkeys infected with wild-type virus. TS-1 is not propagated in the lungs, as expected for wild type viruses, which means that TS-1 is somewhat weakened in toxicity. The results clearly show that RSV 2Bp33F and 3Ap28F have different phenotypic characteristics than TS-1 and are significantly less toxic. This higher level of attenuation is a desirable property for vaccines administered to human infants.
Example 8
Sequence Analysis of RSV Subgroup B Strains
The temperature-sensitive (ts) phenotype is strongly associated with in vivo attenuation; In addition, some non-ts mutations may also be attenuated. Identification of ts and non-ts attenuated mutations is accomplished by sequencing and evaluation of growth phenotypes of ts, cold-adapted (ca), and in vivo RSV variants and returners.
The genomes of the following 5 RSV 2B strains were fully sequenced: one restorer named 2B parent, 2B33F, 2B33F TS (+), one restorer named 2B20L and 2B20L TS (+). The 2B33F and 2B20L strains are ts and ca and are described in US Patent Application No. 08 / 059,444 (78), incorporated herein by reference. After identifying the regions where mutations were located in 2B33F and 2B20L, nine additional isolates of 2B33F “retrogen” obtained after passage at 39 ° C. and in vivo African Green Monkey or chimpanzee, and at 39 ° C. in vitro Nine additional isolates of the 2B20L “return body” obtained after passage are sequenced in these regions. The ts, ca, and attenuated phenotypes of many of these restorers were characterized and evaluated. Correlations between phenotype ts, vaccine attenuation and sequence changes were confirmed.
A summary of the results is shown in Table 21-26.
Many important observations can be derived from these data:
a. As shown in Table 21 (for 2B33F) and 22 (for 2B20L), there are relatively few sequence changes identified in the two variant strains: RSV 2B33F shows two changes in the 3 'genomic promoter region, noncoding 5 of the M gene. It differs from the parental RSV 2B by two changes in termini and a 4 code change + 1 non-coding (poly (A) motif) change in the RNA dependent RNA polymerase encoding L gene. In addition, 14 changes are located only in the SH gene. RSV 2B20L differs from parental RSV 2B only at seven nucleotide positions, three of which include two changes in the 3 'genomic promoter and one coding change in the L gene, are common for the 2B33F virus. Two additional unique changes in the 2B20L virus are located in the coding region of the L gene. Potential attenuation mutations have been identified in RNA dependent RNA polymerase.
b. Two ts mutations can be identified in the L genes of virus strains 2B33F and 2B20L, which have attenuated toxicity:
(i) In 2B33F, mutations at nucleotide position 9853 (A → G) that induce a code change in the L protein of amino acid 451 (Lys → Arg) are clearly associated with the ts and attenuated phenotypes. The reversion only at this site in the 2B33F TS (+) 5a strain is responsible for full growth recovery at 39 ° C. (Table 23) and partial reversion of attenuation in animals. This ts association is supported by partial sequencing of six additional “complete ts returners” (named 4a, 3b, pp2, 3A, 5a, 5A) isolated from cell culture and chimpanzees, only nucleotide 9853 mutations. (Note that one AGM (African Green Monkey) isolate returned in 9853 only partially returns in the ts phenotype) .This amino acid 451 mutation (Lys → Arg) is used to stabilize the codons. By inserting a second mutation, the cDNA infectious clone construct is easily stabilized by reducing the possibility of returning to Lys.
(ii) In 2B20L, mutations in base 14,649 (A → G) that cause a code change in the L protein (amino acid position 2,050, Asn → Asp) appear to be associated with the ts and attenuated phenotypes. At amino acid 2050 this aspartic acid is constantly returned from the TS (+) return (Asp → Asn) or changed to a different amino acid (Asp → Val) by nucleotide substitution at position 14,650 (A → T) (Tables 22, 25) . The observations are based on complete sequence analysis on TS (+) return R1 and partial sequences of a number of additional TS (+) return (R2, R4A, R7A, R8A) in selected regions (Table 25). Further mutations are seen in the R1 return at nucleotide position 13,347 (amino acids 1616, Asn → Asp) associated with this return. However, the effect of this mutation on the ts phenotype is unknown; The L genes of other returnants were not fully sequenced.
c. Three base changes are common for 2B33F and 2B20L strains of virus:
(i) The change at position 14,587 (C → T) with the corresponding change at amino acid 2029 (Thr → Ile) is present in both 2B33F and 2B20L (Tables 21, 22). This nucleotide “T” substitution has been found to be present in 10% of the ancestral RSV2B strain population and may be desirable during the attenuation process. No wild type base "C" is observed in 2B33F and 2B20L viruses.
(ii) Two mutations appear in the 2B33F and 2B20L 3 ′ genomic promoter regions: insertion of nucleotide 4 (C → G) and extra A in the stretch of A at positions 6-11 (antigenome, message sense). When the selected TS (+) return sequence is analyzed, it is believed that this mutation is retained in the 2B33F TS (+) 5a (Table 21) and 2B20L TS (+) R1 (Table 22) returns. These noncoding, cis-acting mutations are associated with partial virus attenuation.
Expression using the minireplicon RSV-CAT system for analysis of these cis-acting changes is indicated by 2B progenitor virus or 2B33F or 2B33F TS (+) helper L gene function (N, P and M2 genes are consistent in these viruses). The 3 'genomic promoter nucleotide 4 (C → G) change is shown in this system in vitro for upregulation of transcription / replication.
Complementarity analysis of 2B33F 3 ′ genomic promoter and helper function provided by ancestor RSV2B virus or 2B33F and 2B33F TS (+) virus by this RSV-CAT minireplicon system was also performed. All three viruses support that both the 2B and 2B33F 3 ′ genomic promoters mediate transcriptional / replicating function. However, 2B33F and 2B33F TS (+) viruses are preferred for the 2B33F 3 ′ genomic promoter. This analysis shows that the resonance of the 3 'genomic promoter, along with RNA dependent RNA polymerase inheritance, changes during the vaccine attenuation process. The reversion of the ts phenotype in 2B33F variant 5a by reversion of single L protein amino acid 451 (Arg → Lys) by sequencing is clearly demonstrated by the support of the transcription / replication function of RSV-CAT minireplicon at 37 ° C. 2B33F virus does not provide helper function for RSV-CAT minireplicon (2B or 2B33F 3 ′ genomic promoter) at 37 ° C.
d. Mismatched overmutations of SH seen in 2B33F are present in all 2B33F reverts, regardless of phenotype, and are not visible in ts, ca, and attenuated 2B20L. Thus, there is no data to associate these mutations with biological phenotypes.
Another wild type RSV designated 18537 was sequenced and compared with the sequence of wild type RSV 2B strain. With one exception, at all important residues described above, the two wild type strains coincide. For 2B, codon ACA at nucleotides 14586-14588 encodes Thr at amino acid 2029 of the L protein, whereas for 18537, codon ATT at nucleotides 14593-14595 encodes Ile at amino acid 2029 (L gene initiation codon at 2B). Compared to 8502-8504, present in nucleotides 8509-8511 at 18537).
Example 9
PCR analysis to detect RSV
PCR analysis is used to detect the presence of RSV. PCR primers are designed and selected based on homology with all subgroup B strains or RSV sequences described herein specific for the individual wild-type, vaccine or reverter RSV subgroup B strains described herein. The analysis is performed by reverse transcription of RNA into the sample followed by PCR amplification of the selected cDNA region corresponding to the RSV nucleotide sequence. Amplified PCR products are identified on gels and their specificity is confirmed by hybridization with specific RSV nucleotide probes.
Example 10
ELISA for RSV detection
An ELISA test is used to detect the presence of RSV. Peptides are designed and selected based on homology with all subgroup B strains or RSV sequences described herein specific for the individual wild-type, vaccine or reverter RSV subgroup B strains described herein. These peptides are used to couple to KLH and to immunize rabbits for the production of monospecific polyclonal antibodies. Selection of these polyclonal antibodies, or combinations of polyclonal and monoclonal antibodies, is used in a "trap ELISA" to detect the presence of RSV antigens.
Table 1a
RSV 2B low temperature adaptation
Table 1b
RSV 2B low temperature adaptation
Table 1c
RSV 2B low temperature adaptation
Table 2a
RSV 3A low temperature adaptation
Table 2b
RSV 3A low temperature adaptation
Table 2c
RSV 3A low temperature adaptation
TABLE 3
Cryogenic Adaptive Passaging Process Summary
Table 4
Plaque Formation Efficiency of Cold Passed Virus
Table 5
TS variant plaques purified from cold adapted viruses
Table 6
Summary of EOP Data on Two Plaque Purified RSV TS Variants
TABLE 7
RSV Infection in BALB / c Mice: Attenuation and Immunity
N.P. = Plaque
* = Values are below the optimal detection range of the assay based on at least 1 plaque / well.
+ = Serum taken 32 days after infection.
Neutralization results are expressed as the reciprocal of the dilutions, RSV 2B, 3A and A2 providing 60% plaque reduction neutralization.
F = infection rate = number of positive mice / total number of mice vaccinated against RSV.
Table 8
RSV TS Variant Passage Summary
Table 9a
EOP and Plaque Morphology of RSV 2B and RSV 3A TS Variants in Vero Cells
Table 9b
EOP and Plaque Formation of RSV 2B and RSV 3A TS Variants in Vero Cells
Table 10
Temperature-Related Growth of RSV 2B and 3A Strains in Vero Cells: 4 Day Virus Yield
Table 11
Monoclonal Antibody Neutralization of RSV 2B and RSV 3A Parent and TS Variants
Neutralization was done by standard 60% plaque reduction neutralization assay on Vero cell monolayers in 96-well microtiter plates. Attacks with a 1: 400 dilution of non-neutralizing monoclonal antibody 131-2G did not reduce titers in any of the 9 strains.
Table 12
RSV TS variant infection in cotton rats-4 days after infection
Table 13
RSV Infection of Serum-positive Chimpanzees
Table 14
Growth, Immunogenicity and Efficacy of RSV 2B ts Variant in Cotton Rat 1
1 = Cotton rats were inoculated with the virus by intranasal route. Four days after infection, lungs and nasal turbinates are collected for virus titration. Six weeks after infection, blood was taken for neutralization and EIA titration and rats received 10 6 PFU of RSV 18537 intranasally. Lungs and nasal turbinates were collected 4 days after administration. Virus and antibody titers are expressed as geometric mean titers.
2 = 60% plaque reduction neutralization test.
3 = coated protein source is RSV A2 F protein.
Table 15
Growth, Immunogenicity, and Efficacy of RSV 3A ts Variant in Cotton Rat 1
1 = Cotton rats were inoculated with the virus by intranasal route. Four days after infection, lungs and nasal turbinates are collected for virus titration. Six weeks after infection, blood was collected for neutralization and EIA titration and rats received 10 6 PFU of RSV A2 intranasally.
Lungs and nasal turbinates were collected 4 days after administration. Virus and antibody titers are expressed as geometric mean titers.
2 = 60% plaque reduction neutralization test.
3 = coated protein source is RSV A2 F protein.
Table 16a
RSV Growth and Immunogenicity in African Green Monkeys: RSV 2B ts Variant 1
Table 16b
RSV Growth and Immunogenicity in African Green Monkeys: RSV 2B ts Variant 1
Table 17a
RSV Growth and Immunogenicity in African Green Monkeys: RSV 2B Attack in Monkeys Eight Weeks After Vaccination with RSV 2B ts Variant 1
Table 17b
RSV Growth and Immunogenicity in African Green Monkeys: RSV 2B Attack in Monkeys Eight Weeks After Vaccination with RSV 2B ts Variant 1
Table 17c
RSV Growth and Immunogenicity in African Green Monkeys: RSV 2B Attack in Monkeys Eight Weeks After Vaccination with RSV 2B ts Variant 1
Table 18a
RSV Growth and Immunogenicity in African Green Monkeys: RSV 3A ts Variant 1
Table 18b
RSV Growth and Immunogenicity in African Green Monkeys: RSV 3A ts Variant 1
Table 19a
RSV Growth and Immunogenicity in African Green Monkeys: RSV 3A Attack in Monkeys Eight Weeks After Vaccination with RSV 3A ts Variant 1
Table 19b
RSV Growth and Immunogenicity in African Green Monkeys: RSV 3A Attack in Monkeys Eight Weeks After Vaccination with RSV 3A ts Variant 1
Table 19c
RSV Growth and Immunogenicity in African Green Monkeys: RSV 3A Attack in Monkeys Eight Weeks After Vaccination with RSV 3A ts Variant 1
Table 20
Growth, Immunogenicity, and Efficacy of RSV TS-1 Cotton Rat 1
1 = Cotton rats were inoculated with the virus by intranasal route. Four days after infection, lungs and nasal turbinates are collected for virus titration. Six weeks after infection blood was taken for neutralization and EIA titration and rats received 10 6 PFU of RSV A2 intranasally. Lungs and nasal turbinates were collected 4 days after administration. Virus and antibody titers are expressed as geometric mean titers.
2 = 60% plaque reduction neutralization test.
3 = coated protein source is RSV A2 F protein.
Table 21
Sequence comparison between RSV 2B and 2B33F strains
† For 2B33F and 2B33F TS (+), there are one more nucleotide position number for the M, SH & L genes than for 2B.
* At position 9853, Lys-Arg change is returned to Lys in 2B33F TS (+) strain
Table 22
Sequence comparison between RSV 2B and 2B20L strains
† For 2B20L and 2B20L TS (+), there is one more nucleotide position number for the L gene than for 2B.
Mutations are common in 2B33F and 2B20L strains.
** At position 14650, the mutation inhibits the ts phenotype in the 2B20L TS (+) return.
Table 23a
RSV 2B, ts and reverter strains
Table 23b
RSV 2B, ts and reverter strains
Table 23c
RSV 2B, ts and reverter strains
* in vivo growth (number of infections / total) as measured by log 10 average virus titer
ND = not done WT = wild type plaque size sp = small plaque size int = medium plaque size
a dose = 10 6.7 PFU IN b dose = 10 5.6 PFU IN c dose = 10 6.3 PFU IN
d Dose = 10 5.9 PFU IN e Dose = 10 6.6 PFU IN + IT
f dose = 10 6.0 PFU IN + IT
Table 24
2B33F return body
† These 2B33F retractor base numbers are one more for the M, SH and L genes than for 2B.
Base 4330, 4410, 4421, 4443, 4455, 4485, 4498, 4506, 4526, 4527, 4543, 4562, 4576, 4599
S = same base as 2B33F
2B = return to base 2B or complete return of phenotype
r = intermediate return of the phenotype
(r) = slight return of phenotype
ND = not done
Table 25
2B20L return body
† These 2B20L reductor base numbers are one more for the L gene than for 2B.
S = same base as 2B20L
2B = return to 2B base
r = intermediate return of the phenotype
* = Base change different from 2B or 2B20L
ND = not done
Table 26a
RSV 2B, ts and Reverter Strains: Phenotypic Summary
Table 26b
RSV 2B, ts and Reverter Strains: Phenotypic Summary
ND = not done
-= Wild-type phenotype, i.e. temperature insensitive, not cold adapted, not toxic
+ To ++++ = increased level of temperature sensitivity, low temperature adaptation or attenuation

SEQUENCE LISTING
〈110〉 American Cyanamid Company
〈120〉 Attenuated Respiratory Syncytial Viruses
<130> 33359-00PCT
〈140〉
141
<150> US60 / 059552
(151) 1997-09-19
<160> 12
<170> Patent In Ver. 2.0
〈210〉 1
<211> 15218
<212> DNA
〈213〉 respiratory syncytial virus
<400> 1
acgcgaaaaa atgcgtacta caaacttgca cattcgaaaa aaatggggca aataagaact 60
tgataagtgc tatttaagtc taaccttttc aatcagaaat ggggtgcaat tcactgagca 120
tgataaaggt tagattacaa aatttatttg acaatgacga agtagcattg ttaaaaataa 180
catgttatac tgataaatta attcttctga ccaatgcatt agccaaagca gcaatacata 240
caattaaatt aaacggcata gtttttatac atgttataac aagcagtgaa gtgtgccctg 300
ataacaatat tgtagtgaaa tctaacttta caacaatgcc aatactacaa aatggaggat 360
acatatggga attgattgag ttgacacact gctctcaatt aaacggttta atggatgata 420
attgtgaaat caaattttct aaaagactaa gtgactcagt aatgactaat tatatgaatc 480
aaatatctga cttacttggg cttgatctca attcatgaat tatgtttagt ctaattcaat 540
agacatgtgt ttattaccat tttagttaat ataaaaactc atcaaaggga aatggggcaa 600
ataaactcac ctaatcaatc aaaccatgag cactacaaat gacaacacta ctatgcaaag 660
attgatgatc acagacatga gacccctgtc aatggattca ataataacat ctcttaccaa 720
agaaatcatc acacacaaat tcatatactt gataaacaat gaatgtattg taagaaaact 780
tgatgaaaga caagctacat ttacattctt agtcaattat gagatgaagc tactgcacaa 840
agtagggagt accaaataca aaaaatacac tgaatataat acaaaatatg gcactttccc 900
catgcctata tttatcaatc acggcgggtt tctagaatgt attggcatta agcctacaaa 960
acacactcct ataatataca aatatgacct caacccgtga attccaacaa aaaaaccaac 1020
ccaaccaaac caaactattc ctcaaacaac agtgctcaat agttaagaag gagctaatcc 1080
attttagtaa ttaaaaataa aagtaaagcc aataacataa attggggcaa atacaaagat 1140
ggctcttagc aaagtcaagt tgaatgatac attaaataag gatcagctgc tgtcatccag 1200
caaatacact attcaacgta gtacaggaga taatattgac actcccaatt atgatgtgca 1260
aaaacaccta aacaaactat gtggtatgct attaatcact gaagatgcaa atcataaatt 1320
cacaggatta ataggtatgt tatatgctat gtccaggtta ggaagggaag acactataaa 1380
gatacttaaa gatgctggat atcatgttaa agctaatgga gtagatataa caacatatcg 1440
tcaagatata aatggaaagg aaatgaaatt cgaagtatta acattatcaa gcttgacatc 1500
agaaatacaa gtcaatattg agatagaatc tagaaagtcc tacaaaaaaa tgctaaaaga 1560
gatgggagaa gtggctccag aatataggca tgattctcca gactgtggga tgataatact 1620
gtgtatagct gcacttgtga taaccaaatt agcagcagga gacagatcag gtcttacagc 1680
agtaattagg agggcaaaca atgtcttaaa aaacgaaata aaacgataca agggcctcat 1740
accaaaggat atagctaaca gtttttatga agtgtttgaa aaacaccctc atcttataga 1800
tgttttcgtg cactttggca ttgcacaatc atccacaaga gggggtagta gagttgaagg 1860
aatctttgca ggattgttta tgaatgccta tggttcaggg caagtaatgc taagatgggg 1920
agttttagcc aaatctgtaa aaaatatcat gctaggacat gctagtgtcc aggcagaaat 1980
ggagcaagtt gtggaagtct atgagtatgc acagaagttg ggaggagaag ctggattcta 2040
ccatatattg aacaatccaa aagcatcatt gctgtcatta actcaatttc ccaacttctc 2100
aagtgtggtc ctaggcaatg cagcaggtct aggcataatg ggagagtata gaggtacacc 2160
aagaaaccag gatctttatg atgcagctaa agcatatgca gagcaactca aagaaaatgg 2220
agtaataaac tacagtgtat tagacttaac agcagaagaa ttggaagcca taaagcatca 2280
actcaacccc aaagaagatg atgtagagct ttaagttaac aaaaaatacg gggcaaataa 2340
gtcaacatgg agaagtttgc acctgaattt catggagaag atgcaaataa caaagctacc 2400
aaattcctag aatcaataaa gggcaagttc gcatcatcca aagatcctaa gaagaaagat 2460
agcataatat ctgttaactc aatagatata gaagtaacta aagagagccc gataacatct 2520
ggcaccaaca tcatcaatcc aacaagtgaa gccgacagta ccccagaaac aaaagccaac 2580
tacccaagaa aacccctagt aagcttcaaa gaagatctca ccccaagtga caaccctttt 2640
tctaagttgt acaaggaaac aatagaaaca tttgataaca atgaagaaga atctagctac 2700
tcatatgaag agataaatga tcaaacaaat gacaacatta cagcaagact agatagaatt 2760
gatgaaaaat taagtgaaat attaggaatg ctccatacat tagtagttgc aagtgcagga 2820
cccacttcag ctcgcgatgg aataagagat gctatggttg gtctaagaga agagatgata 2880
gaaaaaataa gagcggaagc attaatgacc aatgataggt tagaggctat ggcaagactt 2940
aggaatgagg aaagcgaaaa aatggcaaaa gacacctcag atgaagtgtc tcttaatcca 3000
acttccaaaa aattgagtga cttgttggaa gacaacgata gtgacaatga tctatcactt 3060
gatgattttt gatcagcgat caactcactc agcaatcaac aacatcaata aaacagacat 3120
caatccattg aatcaactgc cagaccgaac aaacaaacgt ccatcagtag aaccaccaac 3180
caatcaatca accaattgat caatcagcaa cccgacaaaa ttaacaatat agtaacaaaa 3240
aaagaacaag atggggcaaa tatggaaaca tacgtgaaca agcttcacga aggctccaca 3300
tacacagcag ctgttcagta caatgttcta gaaaaagatg atgatcctgc atcactaaca 3360
atatgggtgc ctatgttcca gtcatctgtg ccagcagact tgctcataaa agaacttgca 3420
agcatcaata tactagtgaa gcagatctct acgcccaaag gaccttcact acgagtcacg 3480
attaactcaa gaagtgctgt gctggctcaa atgcctagta atttcatcat aagcgcaaat 3540
gtatcattag atgaaagaag caaattagca tatgatgtaa ctacaccttg tgaaatcaaa 3600
gcatgcagtc taacatgctt aaaagtaaaa agtatgttaa ctacagtcaa agatcttacc 3660
atgaagacat tcaaccccac tcatgagatc attgctctat gtgaatttga aaatattatg 3720
acatcaaaaa gagtaataat accaacctat ctaagatcaa ttagtgtcaa gaacaaggat 3780
ctgaactcac tagaaaatat agcaaccacc gaattcaaaa atgctatcac caatgcaaaa 3840
attattcctt atgcaggatt agtgttagtt atcacagtta ctgacaataa aggagcattc 3900
aaatatatca aaccacagag tcaatttata gtagatcttg gtgcctacct agaaaaagag 3960
agcatatatt atgtgactac taattggaag catacagcta cacgtttttc aatcaaacca 4020
ctagaggatt aaacttaatt atcaacactg aatgacaggt ccacatatat cctcaaacta 4080
cacactatat ccaaacatca taaacatcta cactacacac ttcatcacac aaaccaatcc 4140
cactcaaaat ccaaaatcac taccagccac tatctgctag acctagagtg cgaataggta 4200
aataaaacca aaatatgggg taaatagaca ttagttagag ttcaatcaat cttaacaacc 4260
atttataccg ccaattcaac acatatacta taaatcttaa aatgggaaat acatccatca 4320
caatagaatt cacaagcaaa ttttggccct attttacact aatacatatg atcttaactc 4380
taatcttttt actaattata atcactatta tgattgcaat actaaataag ctaagtgaac 4440
ataaagcatt ctgtaacaaa actcttgaac taggacagat gtatcaaatc aacacataga 4500
gttctaccat tatgctgtgt caaattataa tcctgtatat ataaacaaac aaatccaatc 4560
ttctcacaga gtcatggtgt cgcaaaacca cgctaactat catggtagca tagagtagtt 4620
atttaaaaat taacataatg atgaattgtt agtatgagat caaaaacaac attggggcaa 4680
atgcaaccat gtccaaacac aagaatcaac gcactgccag gactctagaa aagacctggg 4740
atactcttaa tcatctaatt gtaatatcct cttgtttata cagattaaat ttaaaatcta 4800
tagcacaaat agcactatca gttttggcaa tgataatctc aacctctctc ataattgcag 4860
ccataatatt catcatctct gccaatcaca aagttacact aacaacggtc acagttcaaa 4920
caataaaaaa ccacactgaa aaaaacatca ccacctaccc tactcaagtc tcaccagaaa 4980
gggttagttc atccaagcaa cccacaacca catcaccaat ccacacaagt tcagctacaa 5040
catcacccaa tacaaaatca gaaacacacc atacaacagc acaaaccaaa ggcagaacca 5100
ccacttcaac acagaccaac aagccaagca caaaaccacg tccaaaaaat ccaccaaaaa 5160
aagatgatta ccattttgaa gtgttcaact tcgttccctg cagtatatgt ggcaacaatc 5220
aactttgcaa atccatctgc aaaacaatac caagcaacaa accaaagaag aaaccaacca 5280
tcaaacccac aaacaaacca accaccaaaa ccacaaacaa aagagaccca aaaacaccag 5340
ccaaaacgac gaaaaaagaa actaccacca acccaacaaa aaaactaacc ctcaagacca 5400
cagaaagaga caccagcacc tcacaatcca ctgcactcga cacaaccaca ttaaaacaca 5460
cagtccaaca gcaatccctc ctctcaacca cccccgaaaa cacacccaac tccacacaaa 5520
cacccacagc atccgagccc tccacaccaa actccaccca aaaaacccag ccacatgctt 5580
agttattcaa aaactacatc ttagcagaga accgtgatct atcaagcaag aacgaaatta 5640
aacctggggc aaataaccat ggagttgatg atccacaagt caagtgcaat cttcctaact 5700
cttgctatta atgcattgta cctcacctca agtcagaaca taactgagga gttttaccaa 5760
tcgacatgta gtgcagttag cagaggttat tttagtgctt taagaacagg ttggtatact 5820
agtgtcataa caatagaatt aagtaatata aaagaaacca aatgcaatgg aactgacact 5880
aaagtaaaac ttatgaaaca agaattagat aagtataaga atgcagtaac agaattacag 5940
ctacttatgc aaaacacacc agctgtcaac aaccgggcca gaagagaagc accacagtat 6000
atgaactaca caatcaatac cactaaaaac ctaaatgtat caataagcaa gaagaggaaa 6060
cgaagatttc taggcttctt gttaggtgtg ggatctgcaa tagcaagtgg tatagctgta 6120
tcaaaagttc tacaccttga aggagaagtg aacaagatca aaaatgcttt gttgtctaca 6180
aacaaagctg tagtcagttt atcaaatggg gtcagtgttt taaccagcaa agtgttagat 6240
ctcaagaatt acataaataa ccaattatta cccatagtaa atcaacagag ctgtcgcatc 6300
tccaacattg aaacagttat agaattccag cagaagaaca gcagattgtt ggaaatcacc 6360
agagaattta gtgtcaatgc aggtgtaaca acacctttaa gcacttacat gttgacaaac 6420
agtgagttac tatcattaat caatgatatg cctataacaa atgatcagaa aaaattaatg 6480
tcaagcaatg ttcagatagt aaggcaacaa agttattcca tcatgtctat aataaaggaa 6540
gaagtccttg catatgttgt acagctgcct atctatggtg taatagatac accttgctgg 6600
aaattgcaca catcgcctct atgcactacc aacatcaaag aaggatcaaa tatttgttta 6660
acaaggactg atagaggatg gtattgtgat aatgcaggat cagtatcctt ctttccacag 6720
gctgacactt gtaaagtaca gtccaatcga gtattttgtg acactatgaa cagtttgaca 6780
ttaccaagtg aagtcagcct ttgtaacact gacatattca attccaagta tgactgcaaa 6840
attatgacat caaaaacaga cataagcagc tcagtaatta cttctcttgg agctatagtg 6900
tcatgctatg gtaaaactaa atgcactgca tccaacaaaa atcgtgggat tataaagaca 6960
ttttctaatg gttgtgacta tgtgtcaaac aaaggagtag atactgtgtc agtgggcaac 7020
actttatact atgtaaacaa gctggaaggc aagaaccttt atgtaaaagg ggaacctata 7080
ataaattact atgaccctct agtgtttcct tctgatgagt ttgatgcatc aatatctcaa 7140
gtcaatgaaa aaatcaatca aagtttagct tttattcgta gatctgatga attactacat 7200
aatgtaaata ctggcaaatc tactacaaat attatgataa ctacaattat tatagtaatc 7260
attgtagtat tgttatcatt aatagctatt ggtttactgt tgtattgtaa agccaaaaac 7320
acaccagtta cactaagcaa agaccaacta agtggaatca ataatattgc attcagcaaa 7380
tagacaaaaa accacctgat catgtttcaa caacaatctg ctgaccacca atcccaaatc 7440
aacttacaac aaatatttca acatcacagt acaggctgaa tcatttcctc acatcatgct 7500
acccacataa ctaagctaga tccttaactt atagttacat aaaaacctca agtatcacaa 7560
tcaaccacta aatcaacaca tcattcacaa aattaacagc tggggcaaat atgtcgcgaa 7620
gaaatccttg taaatttgag attagaggtc attgcttgaa tggtagaaga tgtcactaca 7680
gtcataatta ctttgaatgg cctcctcatg cattactagt gaggcaaaac ttcatgttaa 7740
acaagatact caagtcaatg gacaaaagca tagacacttt gtctgaaata agtggagctg 7800
ctgaactgga tagaacagaa gaatatgctc ttggtatagt tggagtgcta gagagttaca 7860
taggatctat aaacaacata acaaaacaat cagcatgtgt tgctatgagt aaacttctta 7920
ttgagatcaa tagtgatgac attaaaaagc ttagagataa tgaagaaccc aattcaccta 7980
agataagagt gtacaatact gttatatcat acattgagag caatagaaaa aacaacaagc 8040
aaaccatcca tctgctcaag agactaccag cagacgtgct gaagaagaca ataaagaaca 8100
cattagatat ccacaaaagc ataaccataa gcaatccaaa agagtcaact gtgaatgatc 8160
aaaatgacca aaccaaaaat aatgatatta ccggataaat atccttgtag tatatcatcc 8220
atattgatct caagtgaaag catggttgct acattcaatc ataaaaacat attacaattt 8280
aaccataact atttggataa ccaccagcgt ttattaaatc atatatttga tgaaattcat 8340
tggacaccta aaaacttatt agatgccact caacaatttc tccaacatct taacatccct 8400
gaagatatat atacagtata tatattagtg tcataatgct tgaccataac gactctatgt 8460
catccaacca taaaactatt ttgataaggt tatgggacaa aatggatccc attattaatg 8520
gaaactctgc taatgtgtat ctaactgata gttatttaaa aggtgttatc tctttttcag 8580
agtgtaatgc tttagggagt tatcttttta acggccctta tcttaaaaat gattacacca 8640
acttaattag tagacaaagc ccactactag agcatatgaa tcttaaaaaa ctaactataa 8700
cacagtcatt aatatctaga tatcataaag gtgaactgaa attagaagaa ccaacttatt 8760
tccagtcatt acttatgaca tataaaagta tgtcctcgtc tgaacaaatt gctacaacta 8820
acttacttaa aaaaataata cgaagagcca tagaaataag tgatgtaaag gtgtacgcca 8880
tcttgaataa actaggatta aaggaaaagg acagagttaa gcccaacaat aattcaggtg 8940
atgaaaactc agtacttaca accataatta aagatgatat actttcggct gtggaaaaca 9000
atcaatcata tacaaattca gacaaaagtc actcagtaaa tcaaaatatc actatcaaaa 9060
caacactctt gaaaaaattg atgtgttcaa tgcaacatcc tccatcatgg ttaatacact 9120
ggttcaattt atatacaaaa ttaaataaca tattaacaca atatcgatca aatgaggtaa 9180
aaagtcatgg gtttatatta atagataatc aaactttaag tggttttcag tttattttaa 9240
atcaatatgg ttgtatcgtt tatcataaag gactcaaaaa aatcacaact actacttaca 9300
atcaattttt gacatggaaa gacatcagcc ttagcagatt aaatgtttgc ttaattactt 9360
ggataagtaa ttgtttaaat acattaaaca aaagcttagg gctgagatgt ggattcaata 9420
atgttgtgtt atcacaatta tttctttatg gagattgtat actgaaatta tttcataatg 9480
aaggcttcta cataataaaa gaagtagagg gatttattat gtctttaatt ctaaacataa 9540
cagaagaaga tcaatttagg aaacgatttt ataatagcat gctaaataac atcacagatg 9600
cagctattaa ggctcaaaag gacctactat caagagtatg tcacacttta ttagacaaga 9660
cagtgtctga taatatcata aatggtaaat ggataatcct attaagtaaa tttcttaaat 9720
tgattaagct tgcaggtgat aataatctca ataacttgag tgagctatat tttctcttca 9780
gaatctttgg acatccaatg gtcgatgaaa gacaagcaat ggattctgta agaattaact 9840
gtaatgaaac taagttctac ttattaagta gtctaagtac attaagaggt gctttcattt 9900
atagaatcat aaaagggttt gtaaatacct acaacagatg gcccacctta aggaatgcta 9960
ttgtcctacc tctaagatgg ttaaactact ataaacttaa tacttatcca tctctacttg 10020
aaatcacaga aaatgatttg attattttat caggattgcg gttctatcgt gagtttcatc 10080
tgcctaaaaa agtggatctt gaaatgataa taaatgacaa agccatttca cctccaaaag 10140
atctaatatg gactagtttt cctagaaatt acatgccatc acatatacaa aattatatag 10200
aacatgaaaa gttgaagttc tctgaaagcg acagatcgag aagagtacta gagtattact 10260
tgagagataa taaattcaat gaatgcgatc tatacaattg tgtagtcaat caaagctatc 10320
tcaacaactc taatcacgtg gtatcactaa ctggtaaaga aagagagctc agtgtaggta 10380
gaatgtttgc tatgcaacca ggtatgttta ggcaaatcca aatcttagca gagaaaatga 10440
tagctgaaaa tattttacaa ttcttccctg agagtttgac aagatatggt gatctagagc 10500
ttcaaaagat attagaatta aaagcaggaa taagcaacaa gtcaaatcgt tataatgata 10560
actacaacaa ttatatcagt aaatgttcta tcattacaga tcttagcaaa ttcaatcagg 10620
catttagata tgaaacatca tgtatctgca gtgatgtatt agatgaactg catggagtac 10680
aatctctgtt ctcttggttg catttaacaa tacctcttgt cacaataata tgtacatata 10740
gacatgcacc tcctttcata aaggatcatg ttgttaatct taatgaggtt gatgaacaaa 10800
gtggattata cagatatcat atgggtggta ttgagggctg gtgtcaaaaa ctgtggacca 10860
ttgaagctat atcattatta gatctaatat ctctcaaagg gaaattctct atcacagctc 10920
tgataaatgg tgataatcag tcaattgata taagcaaacc agttagactt atagagggtc 10980
agacccatgc acaagcagat tatttgttag cattaaatag ccttaaattg ttatataaag 11040
agtatgcagg tataggccat aagcttaagg gaacagagac ctatatatcc cgagatatgc 11100
agttcatgag caaaacaatc cagcacaatg gagtgtacta tccagccagt atcaaaaaag 11160
tcctgagagt aggtccatgg ataaacacga tacttgatga ttttaaagtt agtttagaat 11220
ctataggcag cttaacacag gagttagaat acagaggaga aagcttatta tgcagtttaa 11280
tatttaggaa catttggtta tacaatcaaa ttgctttgca actccgaaat catgcattat 11340
gtaacaataa gctatattta gatatattga aagtattaaa acacttaaaa acttttttta 11400
atcttgatag cattgatatg gctttatcat tgtatatgaa tttgcctatg ctgtttggtg 11460
gtggtgatcc taatttgtta tatcgaagct tttataggag aactccagac ttccttacag 11520
aagctatagt acattcagtg tttgtgttga gctattatac tggtcacgat ttacaagata 11580
agctccagga tcttccagat gatagactga acaaattctt gacatgtgtc atcacatttg 11640
ataaaaatcc caatgccgag tttgtaacat tgatgaggga tccacaggct ttagggtctg 11700
aaaggcaagc taaaattact agtgagatta atagattagc agtaacagaa gtcttaagta 11760
tagccccaaa caaaatattt tctaaaagtg cacaacatta tactaccact gagattgatc 11820
taaatgacat tatgcaaaat atagaaccaa cttaccctca tggattaaga gttgtttatg 11880
aaagtttacc tttttataaa gcagaaaaaa tagttaatct tatatcagga acaaaatcca 11940
taactaatat acttgaaaaa acatcagcaa tagatacaac tgatattaat agggctactg 12000
atatgatgag gaaaaatata actttactta taaggatact tccactagat tgtaacaaag 12060
acaaaagaga gttattaagt ttagaaaatc ttagtataac tgaattaagc aagtatgtaa 12120
gagaaagatc ttggtcatta tccaatatag taggagtaac atcgccaagt attatgttca 12180
caatggacat taaatataca actagcacta tagccagtgg tataataata gaaaaatata 12240
atgttaatag tttaactcgt ggtgaaagag gacccaccaa gccatgggta ggctcatcca 12300
cgcaggagaa aaaaacaatg ccagtgtaca acagacaagt tttaaccaaa aagcaaagag 12360
accaaataga tttattagca aaattagact gggtatatgc atccatagac aacaaagatg 12420
aattcatgga agaactgagt actggaacac ttggactgtc atatgaaaaa gccaaaaagt 12 480
tgtttccaca atatctaagt gtcaattatt tacaccgttt aacagtcagt agtagaccat 12540
gtgaattccc tgcatcaata ccagcttata gaacaacaaa ttatcatttt gatactagtc 12600
ctatcaatca tgtattaaca gaaaagtatg gagatgaaga tatcgacatt gtgtttcaaa 12660
attgcataag ttttggtctt agcctgatgt cggttgtgga acaattcaca aacatatgtc 12720
ctaatagaat tattctcata ccgaagctga atgagataca tttgatgaaa cctcctatat 12780
ttacaggaga tgttgatatc atcaagttga agcaagtgat acaaaagcag cacatgttcc 12840
taccagataa aataagttta acccaatatg tagaattatt cttaagtaac aaagcactta 12900
aatctggatc tcacatcaac tctaatttaa tattagtaca taaaatgtct gattattttc 12960
ataatgctta tattttaagt actaatttag ctggacattg gattctgatt attcaactta 13020
tgaaagattc aaaaggtatt tttgaaaaag attggggaga ggggtacata actgatcata 13080
tgttcattaa tttgaatgtt ttctttaatg cttataagac ttatttgcta tgttttcata 13140
aaggttatgg taaagcaaaa ttagaatgtg atatgaacac ttcagatctt ctttgtgttt 13200
tggagttaat agacagtagc tactggaaat ctatgtctaa agttttccta gaacaaaaag 13260
tcataaaata catagtcaat caagacacaa gtttgcgtag aataaaaggc tgtcacagtt 13320
ttaagttgtg gtttttaaaa cgccttaata atgctaaatt taccgtatgc ccttgggttg 13380
ttaacataga ttatcaccca acacacatga aagctatatt atcttacata gatttagtta 13440
gaatggggtt aataaatgta gataaattaa ccattaaaaa taaaaacaaa ttcaatgatg 13500
aattttacac atcaaatctc ttttacatta gttataactt ttcagacaac actcatttgc 13560
taacaaaaca aataagaatt gctaattcag aattagaaga taattataac aaactatatc 13620
acccaacccc agaaacttta gaaaatatgt cattaattcc tgttaaaagt aataatagta 13680
acaaacctaa attttgtata agtggaaata ccgaatctat gatgatgtca acattctcta 13740
gtaaaatgca tattaaatct tccactgtta ccacaagatt caattatagc aaacaagact 13800
tgtacaattt atttccaatt gttgtgatag acaagattat agatcattca ggtaatacag 13860
caaaatctaa ccaactttac accaccactt cacatcagac atctttagta aggaatagtg 13920
catcacttta ttgcatgctt ccttggcatc atgtcaatag atttaacttt gtatttagtt 13980
ccacaggatg caagatcagt atagagtata ttttaaaaga tcttaagatt aaggacccca 14040
gttgtatagc attcataggt gaaggagctg gtaacttatt attacgtacg gtagtagaac 14100
ttcatccaga cataagatac atttacagaa gtttaaaaga ttgcaatgat catagtttac 14160
ctattgaatt tctaaggtta tacaacgggc atataaacat agattatggt gagaatttaa 14220
ccattcctgc tacagatgca actaataaca ttcattggtc ttatttacat ataaaatttg 14280
cagaacctat tagcatcttt gtctgcgatg ctgaattacc tgttacagcc aattggagta 14340
aaattataat tgaatggagt aagcatgtaa gaaagtgcaa gtactgttct tctgtaaata 14400
gatgcatttt aattgcaaaa tatcatgctc aagatgacat tgatttcaaa ttagataaca 14460
ttactatatt aaaaacttac gtgtgcctag gtagcaagtt aaaaggatct gaagtttact 14520
taatccttac aataggccct gcaaatatac ttcctgtttt tgatgttgta caaaatgcta 14580
aattgacact ttcaagaact aaaaatttca ttatgcctaa aaaaactgac aaggaatcta 14640
tcgatgcaaa tattaaaagc ttaatacctt tcctttgtta ccctataaca aaaaaaggaa 14700
ttaagacttc attgtcaaaa ttgaagagtg tagttaatgg agatatatta tcatattcta 14760
tagctggacg taatgaagta ttcagcaaca agcttataaa ccacaagcat atgaatatcc 14820
taaaatggct agatcatgtt ttaaatttta gatcagctga acttaattac aatcatttat 14880
acatgataga gtccacatat ccttacttaa gtgaattgtt aaatagttta acaaccaatg 14940
agctcaagaa gctgattaaa ataacaggta gtgtgctata caaccttccc aacgaacagt 15000
agtttaaaat atcattaaca agtttggtca aatttagatg ctaacacatc attatattat 15060
agttattaaa aaatatacaa acttttcaat aatttagcat attgattcca aaattatcat 15120
tttagtctta aggggttaaa taaaagtcta aaactaacaa ttatacatgt gcattcacaa 15180
cacaacgaga cattagtttt tgacactttt tttctcgt 15218
〈210〉 2
<211> 2166
<212> PRT
〈213〉 respiratory syncytial virus
<400> 2
Met Asp Pro Ile Ile Asn Gly Asn Ser Ala Asn Val Tyr Leu Thr Asp
1 5 10 15
Ser Tyr Leu Lys Gly Val Ile Ser Phe Ser Glu Cys Asn Ala Leu Gly
20 25 30
Ser Tyr Leu Phe Asn Gly Pro Tyr Leu Lys Asn Asp Tyr Thr Asn Leu
35 40 45
Ile Ser Arg Gln Ser Pro Leu Leu Glu His Met Asn Leu Lys Lys Leu
50 55 60
Thr Ile Thr Gln Ser Leu Ile Ser Arg Tyr His Lys Gly Glu Leu Lys
65 70 75 80
Leu Glu Glu Pro Thr Tyr Phe Gln Ser Leu Leu Met Thr Tyr Lys Ser
85 90 95
Met Ser Ser Ser Glu Gln Ile Ala Thr Thr Asn Leu Leu Lys Lys Ile
100 105 110
Ile Arg Arg Ala Ile Glu Ile Ser Asp Val Lys Val Tyr Ala Ile Leu
115 120 125
Asn Lys Leu Gly Leu Lys Glu Lys Asp Arg Val Lys Pro Asn Asn Asn
130 135 140
Ser Gly Asp Glu Asn Ser Val Leu Thr Thr Ile Lys Asp Asp Ile
145 150 155 160
Leu Ser Ala Val Glu Asn Asn Gln Ser Tyr Thr Asn Ser Asp Lys Ser
165 170 175
His Ser Val Asn Gln Asn Ile Thr Ile Lys Thr Thr Leu Leu Lys Lys
180 185 190
Leu Met Cys Ser Met Gln His Pro Pro Ser Trp Leu Ile His Trp Phe
195 200 205
Asn Leu Tyr Thr Lys Leu Asn Asn Ile Leu Thr Gln Tyr Arg Ser Asn
210 215 220
Glu Val Lys Ser His Gly Phe Ile Leu Ile Asp Asn Gln Thr Leu Ser
225 230 235 240
Gly Phe Gln Phe Ile Leu Asn Gln Tyr Gly Cys Ile Val Tyr His Lys
245 250 255
Gly Leu Lys Lys Ile Thr Thr Thr Thr Tyr Asn Gln Phe Leu Thr Trp
260 265 270
Lys Asp Ile Ser Leu Ser Arg Leu Asn Val Cys Leu Ile Thr Trp Ile
275 280 285
Ser Asn Cys Leu Asn Thr Leu Asn Lys Ser Leu Gly Leu Arg Cys Gly
290 295 300
Phe Asn Asn Val Val Leu Ser Gln Leu Phe Leu Tyr Gly Asp Cys Ile
305 310 315 320
Leu Lys Leu Phe His Asn Glu Gly Phe Tyr Ile Ile Lys Glu Val Glu
325 330 335
Gly Phe Ile Met Ser Leu Ile Leu Asn Ile Thr Glu Glu Asp Gln Phe
340 345 350
Arg Lys Arg Phe Tyr Asn Ser Met Leu Asn Asn Ile Thr Asp Ala Ala
355 360 365
Ile Lys Ala Gln Lys Asp Leu Leu Ser Arg Val Cys His Thr Leu Leu
370 375 380
Asp Lys Thr Val Ser Asp Asn Ile Ile Asn Gly Lys Trp Ile Ile Leu
385 390 395 400
Leu Ser Lys Phe Leu Lys Leu Ile Lys Leu Ala Gly Asp Asn Asn Leu
405 410 415
Asn Asn Leu Ser Glu Leu Tyr Phe Leu Phe Arg Ile Phe Gly His Pro
420 425 430
Met Val Asp Glu Arg Gln Ala Met Asp Ser Val Arg Ile Asn Cys Asn
435 440 445
Glu Thr Lys Phe Tyr Leu Leu Ser Ser Leu Ser Thr Leu Arg Gly Ala
450 455 460
Phe Ile Tyr Arg Ile Ile Lys Gly Phe Val Asn Thr Tyr Asn Arg Trp
465 470 475 480
Pro Thr Leu Arg Asn Ala Ile Val Leu Pro Leu Arg Trp Leu Asn Tyr
485 490 495
Tyr Lys Leu Asn Thr Tyr Pro Ser Leu Leu Glu Ile Thr Glu Asn Asp
500 505 510
Leu Ile Ile Leu Ser Gly Leu Arg Phe Tyr Arg Glu Phe His Leu Pro
515 520 525
Lys Lys Val Asp Leu Glu Met Ile Ile Asn Asp Lys Ala Ile Ser Pro
530 535 540
Pro Lys Asp Leu Ile Trp Thr Ser Phe Pro Arg Asn Tyr Met Pro Ser
545 550 555 560
His Ile Gln Asn Tyr Ile Glu His Glu Lys Leu Lys Phe Ser Glu Ser
565 570 575
Asp Arg Ser Arg Arg Val Leu Glu Tyr Tyr Leu Arg Asp Asn Lys Phe
580 585 590
Asn Glu Cys Asp Leu Tyr Asn Cys Val Val Asn Gln Ser Tyr Leu Asn
595 600 605
Asn Ser Asn His Val Val Ser Leu Thr Gly Lys Glu Arg Glu Leu Ser
610 615 620
Val Gly Arg Met Phe Ala Met Gln Pro Gly Met Phe Arg Gln Ile Gln
625 630 635 640
Ile Leu Ala Glu Lys Met Ile Ala Glu Asn Ile Leu Gln Phe Phe Pro
645 650 655
Glu Ser Leu Thr Arg Tyr Gly Asp Leu Glu Leu Gln Lys Ile Leu Glu
660 665 670
Leu Lys Ala Gly Ile Ser Asn Lys Ser Asn Arg Tyr Asn Asp Asn Tyr
675 680 685
Asn Asn Tyr Ile Ser Lys Cys Ser Ile Ile Thr Asp Leu Ser Lys Phe
690 695 700
Asn Gln Ala Phe Arg Tyr Glu Thr Ser Cys Ile Cys Ser Asp Val Leu
705 710 715 720
Asp Glu Leu His Gly Val Gln Ser Leu Phe Ser Trp Leu His Leu Thr
725 730 735
Ile Pro Leu Val Thr Ile Ile Cys Thr Tyr Arg His Ala Pro Pro Phe
740 745 750
Ile Lys Asp His Val Val Asn Leu Asn Glu Val Asp Glu Gln Ser Gly
755 760 765
Leu Tyr Arg Tyr His Met Gly Gly Ile Glu Gly Trp Cys Gln Lys Leu
770 775 780
Trp Thr Ile Glu Ala Ile Ser Leu Leu Asp Leu Ile Ser Leu Lys Gly
785 790 795 800
Lys Phe Ser Ile Thr Ala Leu Ile Asn Gly Asp Asn Gln Ser Ile Asp
805 810 815
Ile Ser Lys Pro Val Arg Leu Ile Glu Gly Gln Thr His Ala Gln Ala
820 825 830
Asp Tyr Leu Leu Ala Leu Asn Ser Leu Lys Leu Leu Tyr Lys Glu Tyr
835 840 845
Ala Gly Ile Gly His Lys Leu Lys Gly Thr Glu Thr Tyr Ile Ser Arg
850 855 860
Asp Met Gln Phe Met Ser Lys Thr Ile Gln His Asn Gly Val Tyr Tyr
865 870 875 880
Pro Ala Ser Ile Lys Lys Val Leu Arg Val Gly Pro Trp Ile Asn Thr
885 890 895
Ile Leu Asp Asp Phe Lys Val Ser Leu Glu Ser Ile Gly Ser Leu Thr
900 905 910
Gln Glu Leu Glu Tyr Arg Gly Glu Ser Leu Leu Cys Ser Leu Ile Phe
915 920 925
Arg Asn Ile Trp Leu Tyr Asn Gln Ile Ala Leu Gln Leu Arg Asn His
930 935 940
Ala Leu Cys Asn Asn Lys Leu Tyr Leu Asp Ile Leu Lys Val Leu Lys
945 950 955 960
His Leu Lys Thr Phe Phe Asn Leu Asp Ser Ile Asp Met Ala Leu Ser
965 970 975
Leu Tyr Met Asn Leu Pro Met Leu Phe Gly Gly Gly Asp Pro Asn Leu
980 985 990
Leu Tyr Arg Ser Phe Tyr Arg Arg Thr Pro Asp Phe Leu Thr Glu Ala
995 1000 1005
Ile Val His Ser Val Phe Val Leu Ser Tyr Tyr Thr Gly His Asp Leu
1010 1015 1020
Gln Asp Lys Leu Gln Asp Leu Pro Asp Asp Arg Leu Asn Lys Phe Leu
1025 1030 1035 1040
Thr Cys Val Ile Thr Phe Asp Lys Asn Pro Asn Ala Glu Phe Val Thr
1045 1050 1055
Leu Met Arg Asp Pro Gln Ala Leu Gly Ser Glu Arg Gln Ala Lys Ile
1060 1065 1070
Thr Ser Glu Ile Asn Arg Leu Ala Val Thr Glu Val Leu Ser Ile Ala
1075 1080 1085
Pro Asn Lys Ile Phe Ser Lys Ser Ala Gln His Tyr Thr Thr Thr Glu
1090 1095 1100
Ile Asp Leu Asn Asp Ile Met Gln Asn Ile Glu Pro Thr Tyr Pro His
1105 1110 1115 1120
Gly Leu Arg Val Val Tyr Glu Ser Leu Pro Phe Tyr Lys Ala Glu Lys
1125 1130 1135
Ile Val Asn Leu Ile Ser Gly Thr Lys Ser Ile Thr Asn Ile Leu Glu
1140 1145 1150
Lys Thr Ser Ala Ile Asp Thr Thr Asp Ile Asn Arg Ala Thr Asp Met
1155 1160 1165
Met Arg Lys Asn Ile Thr Leu Leu Ile Arg Ile Leu Pro Leu Asp Cys
1170 1175 1180
Asn Lys Asp Lys Arg Glu Leu Leu Ser Leu Glu Asn Leu Ser Ile Thr
1185 1190 1195 1200
Glu Leu Ser Lys Tyr Val Arg Glu Arg Ser Trp Ser Leu Ser Asn Ile
1205 1210 1215
Val Gly Val Thr Ser Pro Ser Ile Met Phe Thr Met Asp Ile Lys Tyr
1220 1225 1230
Thr Thr Ser Thr Ile Ala Ser Gly Ile Ile Ile Glu Lys Tyr Asn Val
1235 1240 1245
Asn Ser Leu Thr Arg Gly Glu Arg Gly Pro Thr Lys Pro Trp Val Gly
1250 1255 1260
Ser Ser Thr Gln Glu Lys Lys Thr Met Pro Val Tyr Asn Arg Gln Val
1265 1270 1275 1280
Leu Thr Lys Lys Gln Arg Asp Gln Ile Asp Leu Leu Ala Lys Leu Asp
1285 1290 1295
Trp Val Tyr Ala Ser Ile Asp Asn Lys Asp Glu Phe Met Glu Glu Leu
1300 1305 1310
Ser Thr Gly Thr Leu Gly Leu Ser Tyr Glu Lys Ala Lys Lys Leu Phe
1315 1320 1325
Pro Gln Tyr Leu Ser Val Asn Tyr Leu His Arg Leu Thr Val Ser Ser
1330 1335 1340
Arg Pro Cys Glu Phe Pro Ala Ser Ile Pro Ala Tyr Arg Thr Thr Asn
1345 1350 1355 1360
Tyr His Phe Asp Thr Ser Pro Ile Asn His Val Leu Thr Glu Lys Tyr
1365 1370 1375
Gly Asp Glu Asp Ile Asp Ile Val Phe Gln Asn Cys Ile Ser Phe Gly
1380 1385 1390
Leu Ser Leu Met Ser Val Val Glu Gln Phe Thr Asn Ile Cys Pro Asn
1395 1400 1405
Arg Ile Ile Leu Ile Pro Lys Leu Asn Glu Ile His Leu Met Lys Pro
1410 1415 1420
Pro Ile Phe Thr Gly Asp Val Asp Ile Ile Lys Leu Lys Gln Val Ile
1425 1430 1435 1440
Gln Lys Gln His Met Phe Leu Pro Asp Lys Ile Ser Leu Thr Gln Tyr
1445 1450 1455
Val Glu Leu Phe Leu Ser Asn Lys Ala Leu Lys Ser Gly Ser His Ile
1460 1465 1470
Asn Ser Asn Leu Ile Leu Val His Lys Met Ser Asp Tyr Phe His Asn
1475 1480 1485
Ala Tyr Ile Leu Ser Thr Asn Leu Ala Gly His Trp Ile Leu Ile Ile
1490 1495 1500
Gln Leu Met Lys Asp Ser Lys Gly Ile Phe Glu Lys Asp Trp Gly Glu
1505 1510 1515 1520
Gly Tyr Ile Thr Asp His Met Phe Ile Asn Leu Asn Val Phe Phe Asn
1525 1530 1535
Ala Tyr Lys Thr Tyr Leu Leu Cys Phe His Lys Gly Tyr Gly Lys Ala
1540 1545 1550
Lys Leu Glu Cys Asp Met Asn Thr Ser Asp Leu Leu Cys Val Leu Glu
1555 1560 1565
Leu Ile Asp Ser Ser Tyr Trp Lys Ser Met Ser Lys Val Phe Leu Glu
1570 1575 1580
Gln Lys Val Ile Lys Tyr Ile Val Asn Gln Asp Thr Ser Leu Arg Arg
1585 1590 1595 1600
Ile Lys Gly Cys His Ser Phe Lys Leu Trp Phe Leu Lys Arg Leu Asn
1605 1610 1615
Asn Ala Lys Phe Thr Val Cys Pro Trp Val Val Asn Ile Asp Tyr His
1620 1625 1630
Pro Thr His Met Lys Ala Ile Leu Ser Tyr Ile Asp Leu Val Arg Met
1635 1640 1645
Gly Leu Ile Asn Val Asp Lys Leu Thr Ile Lys Asn Lys Asn Lys Phe
1650 1655 1660
Asn Asp Glu Phe Tyr Thr Ser Asn Leu Phe Tyr Ile Ser Tyr Asn Phe
1665 1670 1675 1680
Ser Asp Asn Thr His Leu Leu Thr Lys Gln Ile Arg Ile Ala Asn Ser
1685 1690 1695
Glu Leu Glu Asp Asn Tyr Asn Lys Leu Tyr His Pro Thr Pro Glu Thr
1700 1705 1710
Leu Glu Asn Met Ser Leu Ile Pro Val Lys Ser Asn Asn Ser Asn Lys
1715 1720 1725
Pro Lys Phe Cys Ile Ser Gly Asn Thr Glu Ser Met Met Met Ser Thr
1730 1735 1740
Phe Ser Ser Lys Met His Ile Lys Ser Ser Thr Val Thr Thr Arg Phe
1745 1750 1755 1760
Asn Tyr Ser Lys Gln Asp Leu Tyr Asn Leu Phe Pro Ile Val Val Ile
1765 1770 1775
Asp Lys Ile Ile Asp His Ser Gly Asn Thr Ala Lys Ser Asn Gln Leu
1780 1785 1790
Tyr Thr Thr Thr Ser His Gln Thr Ser Leu Val Arg Asn Ser Ala Ser
1795 1800 1805
Leu Tyr Cys Met Leu Pro Trp His His Val Asn Arg Phe Asn Phe Val
1810 1815 1820
Phe Ser Ser Thr Gly Cys Lys Ile Ser Ile Glu Tyr Ile Leu Lys Asp
1825 1830 1835 1840
Leu Lys Ile Lys Asp Pro Ser Cys Ile Ala Phe Ile Gly Glu Gly Ala
1845 1850 1855
Gly Asn Leu Leu Leu Arg Thr Val Val Glu Leu His Pro Asp Ile Arg
1860 1865 1870
Tyr Ile Tyr Arg Ser Leu Lys Asp Cys Asn Asp His Ser Leu Pro Ile
1875 1880 1885
Glu Phe Leu Arg Leu Tyr Asn Gly His Ile Asn Ile Asp Tyr Gly Glu
1890 1895 1900
Asn Leu Thr Ile Pro Ala Thr Asp Ala Thr Asn Asn Ile His Trp Ser
1905 1910 1915 1920
Tyr Leu His Ile Lys Phe Ala Glu Pro Ile Ser Ile Phe Val Cys Asp
1925 1930 1935
Ala Glu Leu Pro Val Thr Ala Asn Trp Ser Lys Ile Ile Glu Trp
1940 1945 1950
Ser Lys His Val Arg Lys Cys Lys Tyr Cys Ser Ser Val Asn Arg Cys
1955 1960 1965
Ile Leu Ile Ala Lys Tyr His Ala Gln Asp Asp Ile Asp Phe Lys Leu
1970 1975 1980
Asp Asn Ile Thr Ile Leu Lys Thr Tyr Val Cys Leu Gly Ser Lys Leu
1985 1990 1995 2000
Lys Gly Ser Glu Val Tyr Leu Ile Leu Thr Ile Gly Pro Ala Asn Ile
2005 2010 2015
Leu Pro Val Phe Asp Val Val Gln Asn Ala Lys Leu Thr Leu Ser Arg
2020 2025 2030
Thr Lys Asn Phe Ile Met Pro Lys Lys Thr Asp Lys Glu Ser Ile Asp
2035 2040 2045
Ala Asn Ile Lys Ser Leu Ile Pro Phe Leu Cys Tyr Pro Ile Thr Lys
2050 2055 2060
Lys Gly Ile Lys Thr Ser Leu Ser Lys Leu Lys Ser Val Val Asn Gly
2065 2070 2075 2080
Asp Ile Leu Ser Tyr Ser Ile Ala Gly Arg Asn Glu Val Phe Ser Asn
2085 2090 2095
Lys Leu Ile Asn His Lys His Met Asn Ile Leu Lys Trp Leu Asp His
2100 2105 2110
Val Leu Asn Phe Arg Ser Ala Glu Leu Asn Tyr Asn His Leu Tyr Met
2115 2120 2125
Ile Glu Ser Thr Tyr Pro Tyr Leu Ser Glu Leu Leu Asn Ser Leu Thr
2130 2135 2140
Thr Asn Glu Leu Lys Lys Leu Ile Lys Ile Thr Gly Ser Val Leu Tyr
2145 2150 2155 2160
Asn Leu Pro Asn Glu Gln
2165
〈210〉 3
<211> 15229
<212> DNA
〈213〉 respiratory syncytial virus
<400> 3
acgcgaaaaa atgcgtacta caaacttgca cattcggaaa aaatggggca aataagaatt 60
tgataagtgc tatttaaatc taaccttttc aatcagaaat ggggtgcaat tcactgagca 120
tgataaaggt tagattacaa aatttatttg acaatgacga agtagcattg ttaaaaataa 180
catgttatac tgacaaatta attcttctga ccaatgcatt agccaaagca gtaatacata 240
caattaaatt aaacggcata gtttttatac atgttataac aagcagtgaa gtgtgccctg 300
acaacaatat tgtagtgaaa tctaacttta caacaatgcc aatattacaa aacggaggat 360
acatatggga attgattgag ttgacacact gctctcaatc aaatggtcta atggatgata 420
attgtgaaat caaattttct aaaagactaa gtgactcagt aatgactaat tatatgaatc 480
aaatatctga tttacttggg cttgatctca attcatgaat tatgtttagt ctaatttaat 540
agacatgtgt ttatcaccat tttagttaat ataaaacctc atcaaaggga aatggggcaa 600
ataaactcac ctaatcagtc aaaccatgag cactacaaat gacaacacta ctatgcaaag 660
attgatgatc acagacatga gacccctgtc gatggaatca ataataacat ctctcaccaa 720
agaaatcata acacacaaat tcatatactt gataaacaat gaatgtattg taagaaaact 780
tgatgaaaga caagctacat ttacattctt agtcaattat gagatgaagc tattgcacaa 840
agtagggagt accaaataca agaaatacac tgaatataat acaaaatatg gcactttccc 900
catgcctata tttatcaatc atgacgggtt tctagaatgt attggcatta agcctacaaa 960
acacactcct ataatataca aatatgacct caacccgtaa attccaacaa aaaactaacc 1020
catccaaact aagctattcc tcaaacaaca gtgctcaaca gttaagaagg agctaatcca 1080
ttttagtaat taaaaataaa ggcagagcca ataacataaa ttggggcaaa tacaaagatg 1140
gctcttagca aagtcaagtt aaatgataca ttaaataagg atcagctgct gtcatccagc 1200
aaatacacta ttcaacgtag tacaggagat aatattgaca ctcccaatta tgatgtgcaa 1260
aaacacctaa acaaactatg tggtatgcta ttaatcactg aagatgcaaa tcataaattc 1320
acaggattaa taggtatgtt atatgctatg tccaggttag gaagggaaga cactataaag 1380
atacttaaag atgctggata tcatgttaaa gctaatggag tagatataac aacatatcgt 1440
caagatataa acggaaagga aatgaaattc gaagtattaa cattatcaag cttgacatca 1500
gaaatacaag tcaatattga gatagaatct agaaagtcct acaaaaaaat gctaaaagag 1560
atgggagaag tggctccaga atataggcat gattctccag actgtgggat gataatactg 1620
tgtatagctg cacttgtaat aaccaagtta gcagcaggag atagatcagg tcttacagca 1680
gtaattagga gggcaaacaa tgtcttaaaa aacgaaataa aacgctacaa gggcctcata 1740
ccaaaggata tagctaacag tttttatgaa gtgtttgaaa aacaccctca tcttatagat 1800
gtttttgtgc actttggcat tgcacaatca tccacaagag ggggtagtag agttgaagga 1860
atctttgcag gattatttat gaatgcctat ggttcagggc aagtaatgct aagatgggga 1920
gttctagcca aatctgtaaa aaatatcatg ctaggacatg ctagtgtcca ggcagaaatg 1980
gaacaagttg tggaagttta tgagtatgca cagaagttgg gaggagaagc tggattctac 2040
catatattga acaatccaaa agcatcattg ctgtcattaa ctcaatttcc taacttctca 2100
agtgtggtcc taggcaatgc agcaggtcta ggcataatgg gagagtatag aggtacacca 2160
agaaaccaag atctatatga tgcagccaaa gcatatgcag agcaactcaa agaaaatgga 2220
gtaataaact acagtgtatt agacttaaca gcagaagaat tggaagccat aaagcatcaa 2280
ctcaacccca aagaagatga tgtagagctt taagttaaca aaaaatacgg ggcaaataag 2340
tcaacatgga gaagtttgca cctgaatttc atggagaaga tgcaaacaac aaagctacca 2400
aattcctaga atcaataaag ggcaagtttg catcatccaa agatcctaag aagaaagata 2460
gcataatatc tgttaactca atagatatag aagtaactaa agagagcccg ataacatctg 2520
gcaccaacat catcaatcca ataagtgaag ctgatagtac cccagaagct aaagccaact 2580
acccaagaaa acccctagta agcttcaaag aagatctcac cccaagtgac aacccctttt 2640
ctaagttgta caaagaaaca atagaaacat ttgataacaa tgaagaagaa tctagctact 2700
catatgaaga aataaatgat caaacaaatg acaacattac agcaagacta gatagaattg 2760
atgaaaaatt aagtgaaata ttaggaatgc tccatacatt agtagttgca agtgcaggac 2820
ccacctcagc tcgcgatgga ataagagatg ctatggttgg tctaagagaa gaaatgatag 2880
aaaaaataag agcggaagca ttaatgacca atgataggtt agaggctatg gcaagactta 2940
ggaatgagga aagcgaaaaa atggcaaaag acacctcaga tgaagtgtct cttaatccaa 3000
cttccaaaaa attgagtaat ttgttggaag acaacgatag tgacaatgat ctatcacttg 3060
atgatttttg atcagtgatc aactcactca gcaatcaaca acatcaatga aacagacatc 3120
aatccattga atcaactgcc agactgaaca cacaaacgtc catcagcaga actaccaacc 3180
aatcaatcaa ccaattgatc aatcagcgac ctaacaaaat taacaatata gtaacaaaaa 3240
aagaacaaga tggggcaaat atggaaacat acgtgaacaa gcttcacgag ggctccacat 3300
acacagcagc tgttcagtac aatgttctag aaaaagatga tgatcctgca tcactaacaa 3360
tatgggtgcc tatgttccag tcatctgtgc cagcagactt gctcataaaa gaacttgcaa 3420
gcatcaacat actagtgaag cagatctcca cgcccaaagg accttcacta cgagtcacga 3480
ttaactcaag aagtgctgtg ctggcacaaa tgcctagtag ttttatcata agtgcaaatg 3540
tatcattaga tgaaagaagc aaattagcat atgatgtaac tacaccttgt gaaatcaaag 3600
catgcagtct aacatgctta aaagtaaaaa gtatgttaac tacagtcaaa gatcttacca 3660
tgaaaacatt caatcccact catgagatta ttgctctatg tgaatttgaa aatattatga 3720
catcaaaaag agtaataata ccaacctatc taagatcaat tagtgtcaaa aacaaggacc 3780
tgaactcact agaaaatata gcaaccaccg aattcaaaaa tgctatcacc aatgcgaaaa 3840
ttattcccta tgcaggatta gtattagtta tcacagttac tgacaataaa ggagcattca 3900
aatatatcaa gccacagagt caatttatag tagatcttgg ggcctaccta gaaaaagaga 3960
gcatatatta tgtgactaca aattggaagc atacagctac acgtttttca atcaaaccac 4020
tagaggatta aacttaatta tcaacactaa atgacaggtc cacatatatc ttcaaactat 4080
acattatatc caaacatcat gagcatttac actacacact tttaccatat aaatcaatct 4140
catttaaaat ccaaaattac ttccagctat catctgttag acctagagtg cgaataggta 4200
aataaaacca aaatatgggg taaatagaca ttagttagag ttcaatcaat ctcaacaacc 4260
atttataccg ccaattcagt acatatacta taaatctcaa aatgggaaat acatccatca 4320
caatagaatt cacaagcaaa ttttggcctt attttacact aatacatatg atcttaactc 4380
taatctcttt actaattata atcactatta tgattgcaat actaaataag ctaagtgaac 4440
ataaaacatt ctgcaacaaa actcttgaac taggacagat gtatcaaatc aacacatagt 4500
gttctaccat tatgctgtgt caaattataa tcttgtatat ataaacaaac aaatccaatc 4560
ttctcacaga gtcatggtgg cgcaaaacca cgccaaccat catgatagca tagagtagtt 4620
atttaaaaat taacataatg atgaattatt ggtatgagat caggaacaac attggggcaa 4680
atgcagccat gtccaagcac aagaatcggc gcactgccgg gactctagaa aggacctggg 4740
atactcttaa tcatctaatt gtaatatcct cttgtttata cagattaaat ttaaaatcta 4800
tagcacaaat agcactgtca gttttggcaa tgataatctc aacctctctc ataattgcag 4860
ccataatatt catcatctct gccaatcaca aagttacact aacaacggtt acagttcaaa 4920
caataaaaaa ccacactgaa aaaaacatct ccacctacct tactcaagtc ccaccagaaa 4980
gggtcaactc atccaaacaa cccacaacca catcaccaat ccacacaaat tcagccacaa 5040
tatcaccaaa tacaaaatca gaaacacacc atacaacagc acaaaccaaa ggcagaatca 5100
ccacttcaac acagaccaac aagccaagca caaaatcacg ttcaaaaaat ccaccaaaaa 5160
aaccaaaaga tgattaccat tttgaagtgt tcaattttgt tccctgtagt atatgtggta 5220
ataatcaact ctgcaaatcc atctgcaaaa caataccaag caacaaacca aagaaaaaac 5280
caaccatcaa acccacaaac aaaccaacca ccaaaaccac aaacaaaaga gaccccaaaa 5340
caccagccaa aatgccaaaa aaagaaatca tcaccaaccc agcaaaaaaa ccaaccctca 5400
agaccacaga aagagacacc agcatttcac aatccaccgt gctcgacaca atcactccaa 5460
aatacacaat ccaacagcaa tccctccact caaccacctc cgaaaacaca cccagctcca 5520
cacaaatacc cacagcatcc gagccctcca cattaaatcc taattaaaaa acctagtcac 5580
atgcttagtt attcaaaaac tacatcttag cagagaaccg tgatctatca agcaagaaca 5640
aaattaaacc tggggcaaat aaccatggag ttgctgatcc acaggtcaag tgcaatcttc 5700
ctaactcttg ctgttaatgc attgtacctc acctcaagtc agaacataac tgaggagttt 5760
taccaatcga catgtagtgc agttagcaga ggttatttta gtgctttaag aacaggttgg 5820
tataccagtg tcataacaat agaattaagt aatataaaag aaaccaaatg caatggaact 5880
gacactaaag taaaacttat aaaacaagaa ttagataagt ataagaatgc agtaacagaa 5940
ttacagctac ttatgcaaaa cacgccagct gccaacaacc gggccagaag agaagcacca 6000
cagtacatga actacacaat caataccaca aaaaacctaa atgtatcaat aagcaagaaa 6060
aggaaacgaa gatttctggg cttcttgtta ggtgtaggat ctgcaatagc aagtggtata 6120
gctgtatcca aagttttaca ccttgaagga gaagtgaaca aaatcaaaaa tgctttgttg 6180
tctacaaaca aagctgtagt cagtctatca aatggggtca gtgttttaac cagcaaagtg 6240
ttagatctca agaattacat aaataaccga atattaccca tagtaaatca acagagctgt 6300
cgcatctcca acattgaaac agttatagaa ttccagcaga agaatagcag attgttggaa 6360
atcaccagag aatttagtgt taatgcaggt gtaacaacac ctttaagcac ttacatgtta 6420
acaaacagtg agttactatc attgatcaat gatatgccta taacaaatga ccagaaaaaa 6480
ttaatgtcaa gcaatgttca gatagtaagg caacaaagtt attctatcat gtctataata 6540
aaggaagaag tccttgcata tgttgtacag ctacctatct atggtgtaat agatacacct 6600
tgctggaaat tacacacatc acctctatgc accaccaaca tcaaagaagg atcaaatatt 6660
tgtttaacaa ggactgatag aggatggtat tgtgataatg caggatcagt atccttcttc 6720
ccacaggctg atacttgcaa agtacagtcc aatcgagtat tttgtgacac tatgaacagt 6780
ttaacattac caagtgaagt cagcctttgt aacactgaca tattcaattc caagtatgac 6840
tgcaaaatta tgacatcaaa aacagacata agcagctcag taattacttc tcttggagct 6900
atagtgtcat gctatggaaa aactaaatgc actgcatcca ataaaaatcg tgggattata 6960
aagacatttt ctaatggttg tgactatgtg tcaaacaaag gagtagatac tgtgtcagtg 7020
ggcaacactt tatactatgt aaacaagctg gaaggcaaaa acctttatgt aaaaggggaa 7080
cctataataa attactatga tcctctagtg tttccttctg atgagtttga tgcatcaata 7140
tctcaagtca atgaaaaaat caatcaaagt ttagctttta ttcgtagatc tgatgaatta 7200
ctacataatg taaatactgg caaatctact acaaatatta tgataactac aattattata 7260
gtaatcattg tagtattgtt atcattaata gctattggtt tactgttgta ttgcaaagcc 7320
aaaaacacac cagttacact aagcaaagac caactaagtg gaatcaataa tattgcattc 7380
agcaaataga caaaaaacta cttaatcatg tttcaacaac aatctgctga ccaccaatcc 7440
caaatcaact taacaacaaa tatttcaaca tcatagcaca ggctgaatca tttcctcata 7500
tcatgctacc tacacaacta agctagatct tcaactcata gttacataaa aaccccaagt 7560
atcacaatca aacactaaat cgacacatca ttcacaaaat taacaactgg ggcaaatatg 7620
tcgcgaagaa atccttgtaa atttgagatt agaggtcatt gcttgaatgg tagaagatgt 7680
cactacagtc ataattattt tgaatggcct cctcatgcat tactagtgag gcaaaacttc 7740
atgttaaaca agatacttaa gtcaatggac aaaagcatag acactttgtc ggaaataagt 7800
ggagctgctg aactggatag aacagaagaa tatgctcttg gtatagttgg agtgctagag 7860
agttacatag gatcaataaa caacataaca aaacaatcag catgtgttgc tatgagtaaa 7920
cttcttattg agatcaacag tgatgacatt aaaaaactga gagataacga agaacccaat 7980
tcgcctaaga taagagtgta caatactgtt atatcataca ttgagagcaa tagaaaaaac 8040
aacaagcaaa ccatccatct gctcaaaaga ctaccagcag acgtgctgaa gaagacaata 8100
aagaacacat tagatatcca caaaagcata accataagca actcaaaaga gtcaaccgtg 8160
aatgatcaaa atgaccaaac caaaaataat gatattaccg gataaatatc cttgtagtat 8220
atcatccata ttgatttcaa gtgaaagcat gattgctaca ttcaatcata aaaacatatt 8280
acaatttaac cataaccatt tggataacca ccagtgttta ttaaatcata tatttgatga 8340
aattcattgg acacctaaaa acttattaga tgccactcaa caatttctcc aacatcttaa 8400
catccctgaa gatatatata cagtatatat attagtgtca taatgcttga ccataacaat 8460
tttatatcat tcaaccataa aacaacctta ataaggttat gggacaaaat ggatcccatt 8520
attaatggaa actctgccaa tgtgtatcta actgatagtt atctaaaagg tgttatctct 8580
ttttcagaat gtaatgcttt agggagttac ctttttaacg gcccctatct taaaaatgat 8640
tacaccaact taattagtag acaaagccca ctactagagc atatgaatct aaaaaaacta 8700
actataacac agtcattaat atctagatat cataaaggtg aactgaagtt agaagaacca 8760
acttatttcc agtcattact tatgacatat aaaagtatgt cctcgtctga acaaattgct 8820
acaactaatt tacttaaaaa aataatacga agagctatag aaataagtga tgtaaaggtg 8880
tacgccatct tgaataaact gggactaaag gaaaaggaca gagttaagcc caacaataat 8940
tcaggtgatg aaaactcagt tcttacaacc ataatcaaag atgatatact ttcagctgtg 9000
gaaaacaatc aatcatatac aaattcagac aaaaatcatt cagtaaatca aaatatcact 9060
atcaaaacaa cactcttgaa aaaattgatg tgttcaatgc aacatcctcc atcatggtta 9120
atacactggt tcaatttata tacaaaatta aataacatat taacacaata tcgatcaaat 9180
gaggtaaaaa gtcatgggtt tatattaata gataatcaaa ctttaagtga ttttcagttt 9240
attttaaatc aatatggttg tatcgtttat cataaaggac tcaaaaaaat cacaactact 9300
acttacaatc aatttttgac atggaaagac atcagcctta gcagattaaa tgtttgctta 9360
attacttgga taagtaattg tttaaataca ttaaataaaa gcttagggct gagatgtgga 9420
ttcaataatg ttgtgttatc acaactattt ctttatggag attgtatact gaaattattc 9480
cataatgaag gcttctacat aataaaagaa gtagagggat ttattatgtc tttaattcta 9540
aacataacag aagaagatca atttaggaaa cgattttata atagcatgct aaataacatc 9600
acagatgcag ctattaaggc tcaaaaaaac ctactatcaa gagtatgtca cactttatta 9660
gacaagacag tgtctgataa tatcataaat ggtaaatgga taatcctatt aagtaaattt 9720
cttaaattga ttaagcttgc aggtgataat aatctcaata acttgagtga gctttatttt 9780
ctcttcagaa tctttggaca tccaatggtc gatgaaagac aagcaatgga tgctgtaaga 9840
attaactgta atgaaaccaa gttctactta ttaagtaatc taagtacgtt aagaggtgct 9900
ttcatttata gaatcataaa ggggtttgta aatacctaca acagatggcc cactttaagg 9960
aatgctattg ttctacctct aagatggttg aactattata aacttaatac ttatccatct 10020
ctacttgaaa tcacagagaa agatttgatt attttatcag gattgcggtt ctatcgtgag 10080
tttcatctgc ctaaaaaagt ggatcttgaa atgataataa atgacaaagc catttcacct 10140
ccaaaagatt taatatggac tagttttcct agaaattaca tgccatcaca tatacaaaat 10200
tatatagaac atgaaaagtt gaagttctct gaaagtgaca gatcaagaag agtactagag 10260
tattacttga gagataataa attcaatgaa tgcgatctat acaattgtgt ggtcaatcaa 10320
agctatctca acaactctaa ccatgtggta tcactaactg gtaaagaaag agagctcagt 10380
gtaggtagaa tgtttgctat gcaaccaggt atgtttaggc aaattcaaat cttagcagag 10440
aaaatgatag ccgaaaatat tttacaattc ttccctgaga gtttgacaag atatggtgat 10500
ctagagcttc aaaagatatt agaattaaaa gcaggaataa gcaacaagtc aaatcgttat 10560
aatgataact acaacaatta tatcagtaaa tgttctatca ttacagacct tagcaaattc 10620
aatcaagcat ttagatatga aacatcatgt atctgcagtg atgtattaga tgaactgcat 10680
ggagtacaat ctctgttctc ttggttgcat ttaacaatac ctcttgtcac aataatatgt 10740
acatatagac atgcacctcc ttttataaag gatcatgttg ttaatcttaa taaagttgat 10800
gaacaaagtg gattatacag atatcatatg ggtggtattg aaggctggtg tcaaaaactg 10860
tggaccattg aagctatatc attattagat ctaatatctc tcaaagggaa attctctatc 10920
acagctctaa taaatggtga taatcagtca attgatataa gtaaaccagt tagacttata 10980
gagggtcaga cccatgctca agcagattat ttgttagcat taaatagcct taaattgcta 11040
tataaagagt atgcgggcat aggccacaag ctcaagggaa cagagaccta tatatcccga 11100
gatatgcaat tcatgagcaa aacaatccag cacaatggag tgtactatcc agccagtatc 11160
aaaaaagtcc tgagagtagg tccatggata aatacaatac ttgatgattt taaagttagt 11220
ttagaatcta taggtagctt aacacaggag ttagaatata gaggagagag cttattatgc 11280
agtttaatat ttaggaacat ttggttatac aatcaaattg ctttgcaact ccgaaatcat 11340
gcattatgtc acaataagct atatttagat atattgaaag tattaaaaca cttaaaaact 11400
ttttttaatc ttgatagtat tgatatggct ttaacattgt atatgaattt gcctatgctg 11460
tttggtggtg gtgatcctaa tttgttatat cgaagctttt ataggagaac tccagacttc 11520
cttacagaag ctatagtaca ttcagtgttt gtgttgagct attatactgg tcacgattta 11580
caagataagc tccaggatct tccagatgat agactgaaca aattcttgac atgtatcatc 11640
acgtttgata aaaatcccaa tgccgagttt gtaacattga tgagagatcc acaggcttta 11700
gggtctgaaa ggcaagcaaa aattactagt gagattaata gattagcagt gacagaagtc 11760
ttaagtatag ctccaaacaa aatattttct aaaagtgcac aacattatac taccactgag 11820
attgatctaa atgatattat gcaaaatata gaaccaactt accctcatgg attaagagtt 11880
gtttatgaaa gtttaccttt ttataaagca gaaaaaatag ttaatcttat atcaggaaca 11940
aaatccataa ctaatatact tgaaaaaaca tcagcaatag attcaactga tattaatagg 12000
gctactgata tgatgaggaa aaatataact ttacttataa ggatacttcc actagattgt 12060
aacaaagaca aaagagagtt attaagttta gaaaatctta gtataactga attaagcaag 12120
tatgtaagag aaagatcttg gtcgttatcc aatatagtag gagtaacatc gccaagtatt 12180
atgttcacaa tggacattaa atatacaact agcactatag ccagtggtat aattatagaa 12240
aaatataatg ttaatagttt aactcgtggt gaaagaggac ctactaagcc atgggtaggt 12300
tcatctacgc aggagaaaaa aacaatgcca gtgtacaata gacaagtttt aaccaaaaag 12360
caaagagacc aaatagattt attagcaaaa ttagactggg tatatgcatc catagacaac 12420
aaagatgaat tcatggaaga actgagtact ggaacacttg gactgtcata tgagaaagcc 12480
aaaaaattgt ttccacaata tctaagtgtc aattatttac accgcttaac agtcagtagt 12540
agaccatgtg aattccctgc atcaatacca gcttatagaa caacaaatta tcatttcgat 12600
actagtccta tcaaccatgt attaacagaa aagtatggag atgaagatat cgacattgtg 12660
tttcaaaatt gcataagttt tggtcttagc ttaatgtcgg ttgtggaaca attcacaaac 12720
atatgtccta atagaattat tctcataccg aagctgaatg agatacattt gatgaaacct 12780
cctatattta caggagatgt tgatatcatc aagttgaagc aagtgataca aaaacagcac 12840
atgttcctac cagataaaat aagtttaacc caatatgtag aattattcct aagtaacaaa 12900
gcacttaaat ctggatctca catcaactct aatttaatat tagtacataa aatgtctgat 12960
tattttcata atgcttatat tttaagtact aatttagctg gacattggat tctgattatt 13020
caacttatga aggattcaaa aggtattttt gaaaaagatt ggggagaggg gtatataact 13080
gatcatatgt tcattaattt gaatgttttc tttaatgctt ataagactta tttgctatgt 13140
tttcataaag gttatggtaa agcaaaatta gaatgtgata tgaacacttc agatcttctt 13200
tgtgttttgg agctaataga cagtagctac tggaaatcta tgtctaaagt tttcctagaa 13260
caaaaagtca taaaatacat aatcaatcaa gacacaagtt tgcatagaat aaaaggttgt 13320
catagtttta agttatggtt tttaaaacgc cttaataatg ctaaatttac cgtatgccct 13380
tgggttgtta acatagatta tcacccaaca cacatgaaag ctatattatc ttacatagat 13440
ttagttagaa tggggttaat aaatgtagat aaattaacca ttaaaaataa aaataaattc 13500
aatgatgaat tttacacatc aaatctcttt tacattagtt ataacttttc agataacact 13560
catttgctaa caaaacaaat aagaattgct aattcagaat tagaaaataa ttataacaaa 13620
ctatatcacc caaccccaga aactttagaa aatatgtcat taattcctgt caaaagtaat 13680
aatagtaata aacctaaatt tggtataagt ggaaataccg aatctatgat gacgtcaaca 13740
ttctccaata aaacgcatat taaatcttcc gctgttatta caagattcaa ttatagtaaa 13800
caagacttgt acaatttatt tccaattgtc gtgatagaca ggattataga tcattcaggt 13860
aatacagcaa aatctaacca actctacact accacttcac atcagacatc tttagtaagg 13920
aatagtgcat cactttattg catgcttcct tggcatcatg tcaatagatt taactttgta 13980
tttagttcca caggatgcaa gatcagtata gagtatattt taaaagatct taagattaaa 14040
gaccccagtt gtatagcatt cataggtgaa ggagctggta acttattatt acgtacagta 14100
gtagaacttc atccagacat aagatacatt tacagaagtt taaaagattg caatgatcat 14160
agtttaccta ttgaatttct aaggttatac aacgggcata taaacataga ttatggtgag 14220
aatttaacca ttcctgctac agatgcaact aataacattc attggtctta tttacatata 14280
aaatttgcag aacctattag catttttgtc tgcgatgctg aattacctgt tacagccaat 14340
tggagtaaaa ttataattga atggagtaag catgtaagaa agtgcaagta ctgttcctct 14400
gtaaatagat gcattttaat tgcaaaatat catgcccaag atgatattga tttcaaatta 14460
gataacatta ctatattaaa aacttacgtg tgcctaggta gcaagttaaa aggatctgaa 14520
gtttacttag tccttacaat aggccctgca aatatacttc ctgtttttaa tgttgtgcaa 14580
aatgctaaat tgattctttc aaggactaaa aatttcatta tgcctaaaaa aactgacaaa 14640
gaatctatcg atgcaaatat taaaagctta atacctttcc tttgttaccc tataacaaaa 14700
aaaggaatta agacttcatt gtcaaaattg aagagtgtag ttagtggaga tatattatca 14760
tattctatag ctggacgtaa tgaagtattc agcaacaagc ttataaacca caagcatatg 14820
aatatcctaa aatggctaga tcatgtttta aactttagat cagctgaact taattacaat 14880
catttatata tgatagagtc cacatatcct tacttaagtg aattgttaaa cagtttaaca 14940
accaatgagc tcaagaagct gattaaaata acaggtagtg tactatacaa ccttcccaac 15000
gaacagtaac ttaaaacatc attaacaagt ttgatcaaat ttagatgcta acacatcata 15060
atattatagt tattaaaaaa tatatatgca aacttttcaa taatttagca tattgattcc 15120
aaagttatca ttttggtctt aaggggttga ataaaaatct aaaactaaca attatacatg 15180
tgcatttaca acacaacgag acattagttt ttgacacttt ttttctcgt 15229
〈210〉 4
<211> 2166
<212> PRT
〈213〉 respiratory syncytial virus
<400> 4
Met Asp Pro Ile Ile Asn Gly Asn Ser Ala Asn Val Tyr Leu Thr Asp
1 5 10 15
Ser Tyr Leu Lys Gly Val Ile Ser Phe Ser Glu Cys Asn Ala Leu Gly
20 25 30
Ser Tyr Leu Phe Asn Gly Pro Tyr Leu Lys Asn Asp Tyr Thr Asn Leu
35 40 45
Ile Ser Arg Gln Ser Pro Leu Leu Glu His Met Asn Leu Lys Lys Leu
50 55 60
Thr Ile Thr Gln Ser Leu Ile Ser Arg Tyr His Lys Gly Glu Leu Lys
65 70 75 80
Leu Glu Glu Pro Thr Tyr Phe Gln Ser Leu Leu Met Thr Tyr Lys Ser
85 90 95
Met Ser Ser Ser Glu Gln Ile Ala Thr Thr Asn Leu Leu Lys Lys Ile
100 105 110
Ile Arg Arg Ala Ile Glu Ile Ser Asp Val Lys Val Tyr Ala Ile Leu
115 120 125
Asn Lys Leu Gly Leu Lys Glu Lys Asp Arg Val Lys Pro Asn Asn Asn
130 135 140
Ser Gly Asp Glu Asn Ser Val Leu Thr Thr Ile Lys Asp Asp Ile
145 150 155 160
Leu Ser Ala Val Glu Asn Asn Gln Ser Tyr Thr Asn Ser Asp Lys Asn
165 170 175
His Ser Val Asn Gln Asn Ile Thr Ile Lys Thr Thr Leu Leu Lys Lys
180 185 190
Leu Met Cys Ser Met Gln His Pro Pro Ser Trp Leu Ile His Trp Phe
195 200 205
Asn Leu Tyr Thr Lys Leu Asn Asn Ile Leu Thr Gln Tyr Arg Ser Asn
210 215 220
Glu Val Lys Ser His Gly Phe Ile Leu Ile Asp Asn Gln Thr Leu Ser
225 230 235 240
Asp Phe Gln Phe Ile Leu Asn Gln Tyr Gly Cys Ile Val Tyr His Lys
245 250 255
Gly Leu Lys Lys Ile Thr Thr Thr Thr Tyr Asn Gln Phe Leu Thr Trp
260 265 270
Lys Asp Ile Ser Leu Ser Arg Leu Asn Val Cys Leu Ile Thr Trp Ile
275 280 285
Ser Asn Cys Leu Asn Thr Leu Asn Lys Ser Leu Gly Leu Arg Cys Gly
290 295 300
Phe Asn Asn Val Val Leu Ser Gln Leu Phe Leu Tyr Gly Asp Cys Ile
305 310 315 320
Leu Lys Leu Phe His Asn Glu Gly Phe Tyr Ile Ile Lys Glu Val Glu
325 330 335
Gly Phe Ile Met Ser Leu Ile Leu Asn Ile Thr Glu Glu Asp Gln Phe
340 345 350
Arg Lys Arg Phe Tyr Asn Ser Met Leu Asn Asn Ile Thr Asp Ala Ala
355 360 365
Ile Lys Ala Gln Lys Asn Leu Leu Ser Arg Val Cys His Thr Leu Leu
370 375 380
Asp Lys Thr Val Ser Asp Asn Ile Ile Asn Gly Lys Trp Ile Ile Leu
385 390 395 400
Leu Ser Lys Phe Leu Lys Leu Ile Lys Leu Ala Gly Asp Asn Asn Leu
405 410 415
Asn Asn Leu Ser Glu Leu Tyr Phe Leu Phe Arg Ile Phe Gly His Pro
420 425 430
Met Val Asp Glu Arg Gln Ala Met Asp Ala Val Arg Ile Asn Cys Asn
435 440 445
Glu Thr Lys Phe Tyr Leu Leu Ser Asn Leu Ser Thr Leu Arg Gly Ala
450 455 460
Phe Ile Tyr Arg Ile Ile Lys Gly Phe Val Asn Thr Tyr Asn Arg Trp
465 470 475 480
Pro Thr Leu Arg Asn Ala Ile Val Leu Pro Leu Arg Trp Leu Asn Tyr
485 490 495
Tyr Lys Leu Asn Thr Tyr Pro Ser Leu Leu Glu Ile Thr Glu Lys Asp
500 505 510
Leu Ile Ile Leu Ser Gly Leu Arg Phe Tyr Arg Glu Phe His Leu Pro
515 520 525
Lys Lys Val Asp Leu Glu Met Ile Ile Asn Asp Lys Ala Ile Ser Pro
530 535 540
Pro Lys Asp Leu Ile Trp Thr Ser Phe Pro Arg Asn Tyr Met Pro Ser
545 550 555 560
His Ile Gln Asn Tyr Ile Glu His Glu Lys Leu Lys Phe Ser Glu Ser
565 570 575
Asp Arg Ser Arg Arg Val Leu Glu Tyr Tyr Leu Arg Asp Asn Lys Phe
580 585 590
Asn Glu Cys Asp Leu Tyr Asn Cys Val Val Asn Gln Ser Tyr Leu Asn
595 600 605
Asn Ser Asn His Val Val Ser Leu Thr Gly Lys Glu Arg Glu Leu Ser
610 615 620
Val Gly Arg Met Phe Ala Met Gln Pro Gly Met Phe Arg Gln Ile Gln
625 630 635 640
Ile Leu Ala Glu Lys Met Ile Ala Glu Asn Ile Leu Gln Phe Phe Pro
645 650 655
Glu Ser Leu Thr Arg Tyr Gly Asp Leu Glu Leu Gln Lys Ile Leu Glu
660 665 670
Leu Lys Ala Gly Ile Ser Asn Lys Ser Asn Arg Tyr Asn Asp Asn Tyr
675 680 685
Asn Asn Tyr Ile Ser Lys Cys Ser Ile Ile Thr Asp Leu Ser Lys Phe
690 695 700
Asn Gln Ala Phe Arg Tyr Glu Thr Ser Cys Ile Cys Ser Asp Val Leu
705 710 715 720
Asp Glu Leu His Gly Val Gln Ser Leu Phe Ser Trp Leu His Leu Thr
725 730 735
Ile Pro Leu Val Thr Ile Ile Cys Thr Tyr Arg His Ala Pro Pro Phe
740 745 750
Ile Lys Asp His Val Val Asn Leu Asn Lys Val Asp Glu Gln Ser Gly
755 760 765
Leu Tyr Arg Tyr His Met Gly Gly Ile Glu Gly Trp Cys Gln Lys Leu
770 775 780
Trp Thr Ile Glu Ala Ile Ser Leu Leu Asp Leu Ile Ser Leu Lys Gly
785 790 795 800
Lys Phe Ser Ile Thr Ala Leu Ile Asn Gly Asp Asn Gln Ser Ile Asp
805 810 815
Ile Ser Lys Pro Val Arg Leu Ile Glu Gly Gln Thr His Ala Gln Ala
820 825 830
Asp Tyr Leu Leu Ala Leu Asn Ser Leu Lys Leu Leu Tyr Lys Glu Tyr
835 840 845
Ala Gly Ile Gly His Lys Leu Lys Gly Thr Glu Thr Tyr Ile Ser Arg
850 855 860
Asp Met Gln Phe Met Ser Lys Thr Ile Gln His Asn Gly Val Tyr Tyr
865 870 875 880
Pro Ala Ser Ile Lys Lys Val Leu Arg Val Gly Pro Trp Ile Asn Thr
885 890 895
Ile Leu Asp Asp Phe Lys Val Ser Leu Glu Ser Ile Gly Ser Leu Thr
900 905 910
Gln Glu Leu Glu Tyr Arg Gly Glu Ser Leu Leu Cys Ser Leu Ile Phe
915 920 925
Arg Asn Ile Trp Leu Tyr Asn Gln Ile Ala Leu Gln Leu Arg Asn His
930 935 940
Ala Leu Cys His Asn Lys Leu Tyr Leu Asp Ile Leu Lys Val Leu Lys
945 950 955 960
His Leu Lys Thr Phe Phe Asn Leu Asp Ser Ile Asp Met Ala Leu Thr
965 970 975
Leu Tyr Met Asn Leu Pro Met Leu Phe Gly Gly Gly Asp Pro Asn Leu
980 985 990
Leu Tyr Arg Ser Phe Tyr Arg Arg Thr Pro Asp Phe Leu Thr Glu Ala
995 1000 1005
Ile Val His Ser Val Phe Val Leu Ser Tyr Tyr Thr Gly His Asp Leu
1010 1015 1020
Gln Asp Lys Leu Gln Asp Leu Pro Asp Asp Arg Leu Asn Lys Phe Leu
1025 1030 1035 1040
Thr Cys Ile Ile Thr Phe Asp Lys Asn Pro Asn Ala Glu Phe Val Thr
1045 1050 1055
Leu Met Arg Asp Pro Gln Ala Leu Gly Ser Glu Arg Gln Ala Lys Ile
1060 1065 1070
Thr Ser Glu Ile Asn Arg Leu Ala Val Thr Glu Val Leu Ser Ile Ala
1075 1080 1085
Pro Asn Lys Ile Phe Ser Lys Ser Ala Gln His Tyr Thr Thr Thr Glu
1090 1095 1100
Ile Asp Leu Asn Asp Ile Met Gln Asn Ile Glu Pro Thr Tyr Pro His
1105 1110 1115 1120
Gly Leu Arg Val Val Tyr Glu Ser Leu Pro Phe Tyr Lys Ala Glu Lys
1125 1130 1135
Ile Val Asn Leu Ile Ser Gly Thr Lys Ser Ile Thr Asn Ile Leu Glu
1140 1145 1150
Lys Thr Ser Ala Ile Asp Ser Thr Asp Ile Asn Arg Ala Thr Asp Met
1155 1160 1165
Met Arg Lys Asn Ile Thr Leu Leu Ile Arg Ile Leu Pro Leu Asp Cys
1170 1175 1180
Asn Lys Asp Lys Arg Glu Leu Leu Ser Leu Glu Asn Leu Ser Ile Thr
1185 1190 1195 1200
Glu Leu Ser Lys Tyr Val Arg Glu Arg Ser Trp Ser Leu Ser Asn Ile
1205 1210 1215
Val Gly Val Thr Ser Pro Ser Ile Met Phe Thr Met Asp Ile Lys Tyr
1220 1225 1230
Thr Thr Ser Thr Ile Ala Ser Gly Ile Ile Ile Glu Lys Tyr Asn Val
1235 1240 1245
Asn Ser Leu Thr Arg Gly Glu Arg Gly Pro Thr Lys Pro Trp Val Gly
1250 1255 1260
Ser Ser Thr Gln Glu Lys Lys Thr Met Pro Val Tyr Asn Arg Gln Val
1265 1270 1275 1280
Leu Thr Lys Lys Gln Arg Asp Gln Ile Asp Leu Leu Ala Lys Leu Asp
1285 1290 1295
Trp Val Tyr Ala Ser Ile Asp Asn Lys Asp Glu Phe Met Glu Glu Leu
1300 1305 1310
Ser Thr Gly Thr Leu Gly Leu Ser Tyr Glu Lys Ala Lys Lys Leu Phe
1315 1320 1325
Pro Gln Tyr Leu Ser Val Asn Tyr Leu His Arg Leu Thr Val Ser Ser
1330 1335 1340
Arg Pro Cys Glu Phe Pro Ala Ser Ile Pro Ala Tyr Arg Thr Thr Asn
1345 1350 1355 1360
Tyr His Phe Asp Thr Ser Pro Ile Asn His Val Leu Thr Glu Lys Tyr
1365 1370 1375
Gly Asp Glu Asp Ile Asp Ile Val Phe Gln Asn Cys Ile Ser Phe Gly
1380 1385 1390
Leu Ser Leu Met Ser Val Val Glu Gln Phe Thr Asn Ile Cys Pro Asn
1395 1400 1405
Arg Ile Ile Leu Ile Pro Lys Leu Asn Glu Ile His Leu Met Lys Pro
1410 1415 1420
Pro Ile Phe Thr Gly Asp Val Asp Ile Ile Lys Leu Lys Gln Val Ile
1425 1430 1435 1440
Gln Lys Gln His Met Phe Leu Pro Asp Lys Ile Ser Leu Thr Gln Tyr
1445 1450 1455
Val Glu Leu Phe Leu Ser Asn Lys Ala Leu Lys Ser Gly Ser His Ile
1460 1465 1470
Asn Ser Asn Leu Ile Leu Val His Lys Met Ser Asp Tyr Phe His Asn
1475 1480 1485
Ala Tyr Ile Leu Ser Thr Asn Leu Ala Gly His Trp Ile Leu Ile Ile
1490 1495 1500
Gln Leu Met Lys Asp Ser Lys Gly Ile Phe Glu Lys Asp Trp Gly Glu
1505 1510 1515 1520
Gly Tyr Ile Thr Asp His Met Phe Ile Asn Leu Asn Val Phe Phe Asn
1525 1530 1535
Ala Tyr Lys Thr Tyr Leu Leu Cys Phe His Lys Gly Tyr Gly Lys Ala
1540 1545 1550
Lys Leu Glu Cys Asp Met Asn Thr Ser Asp Leu Leu Cys Val Leu Glu
1555 1560 1565
Leu Ile Asp Ser Ser Tyr Trp Lys Ser Met Ser Lys Val Phe Leu Glu
1570 1575 1580
Gln Lys Val Ile Lys Tyr Ile Ile Asn Gln Asp Thr Ser Leu His Arg
1585 1590 1595 1600
Ile Lys Gly Cys His Ser Phe Lys Leu Trp Phe Leu Lys Arg Leu Asn
1605 1610 1615
Asn Ala Lys Phe Thr Val Cys Pro Trp Val Val Asn Ile Asp Tyr His
1620 1625 1630
Pro Thr His Met Lys Ala Ile Leu Ser Tyr Ile Asp Leu Val Arg Met
1635 1640 1645
Gly Leu Ile Asn Val Asp Lys Leu Thr Ile Lys Asn Lys Asn Lys Phe
1650 1655 1660
Asn Asp Glu Phe Tyr Thr Ser Asn Leu Phe Tyr Ile Ser Tyr Asn Phe
1665 1670 1675 1680
Ser Asp Asn Thr His Leu Leu Thr Lys Gln Ile Arg Ile Ala Asn Ser
1685 1690 1695
Glu Leu Glu Asn Asn Tyr Asn Lys Leu Tyr His Pro Thr Pro Glu Thr
1700 1705 1710
Leu Glu Asn Met Ser Leu Ile Pro Val Lys Ser Asn Asn Ser Asn Lys
1715 1720 1725
Pro Lys Phe Gly Ile Ser Gly Asn Thr Glu Ser Met Met Thr Ser Thr
1730 1735 1740
Phe Ser Asn Lys Thr His Ile Lys Ser Ser Ala Val Ile Thr Arg Phe
1745 1750 1755 1760
Asn Tyr Ser Lys Gln Asp Leu Tyr Asn Leu Phe Pro Ile Val Val Ile
1765 1770 1775
Asp Arg Ile Ile Asp His Ser Gly Asn Thr Ala Lys Ser Asn Gln Leu
1780 1785 1790
Tyr Thr Thr Thr Ser His Gln Thr Ser Leu Val Arg Asn Ser Ala Ser
1795 1800 1805
Leu Tyr Cys Met Leu Pro Trp His His Val Asn Arg Phe Asn Phe Val
1810 1815 1820
Phe Ser Ser Thr Gly Cys Lys Ile Ser Ile Glu Tyr Ile Leu Lys Asp
1825 1830 1835 1840
Leu Lys Ile Lys Asp Pro Ser Cys Ile Ala Phe Ile Gly Glu Gly Ala
1845 1850 1855
Gly Asn Leu Leu Leu Arg Thr Val Val Glu Leu His Pro Asp Ile Arg
1860 1865 1870
Tyr Ile Tyr Arg Ser Leu Lys Asp Cys Asn Asp His Ser Leu Pro Ile
1875 1880 1885
Glu Phe Leu Arg Leu Tyr Asn Gly His Ile Asn Ile Asp Tyr Gly Glu
1890 1895 1900
Asn Leu Thr Ile Pro Ala Thr Asp Ala Thr Asn Asn Ile His Trp Ser
1905 1910 1915 1920
Tyr Leu His Ile Lys Phe Ala Glu Pro Ile Ser Ile Phe Val Cys Asp
1925 1930 1935
Ala Glu Leu Pro Val Thr Ala Asn Trp Ser Lys Ile Ile Glu Trp
1940 1945 1950
Ser Lys His Val Arg Lys Cys Lys Tyr Cys Ser Ser Val Asn Arg Cys
1955 1960 1965
Ile Leu Ile Ala Lys Tyr His Ala Gln Asp Asp Ile Asp Phe Lys Leu
1970 1975 1980
Asp Asn Ile Thr Ile Leu Lys Thr Tyr Val Cys Leu Gly Ser Lys Leu
1985 1990 1995 2000
Lys Gly Ser Glu Val Tyr Leu Val Leu Thr Ile Gly Pro Ala Asn Ile
2005 2010 2015
Leu Pro Val Phe Asn Val Val Gln Asn Ala Lys Leu Ile Leu Ser Arg
2020 2025 2030
Thr Lys Asn Phe Ile Met Pro Lys Lys Thr Asp Lys Glu Ser Ile Asp
2035 2040 2045
Ala Asn Ile Lys Ser Leu Ile Pro Phe Leu Cys Tyr Pro Ile Thr Lys
2050 2055 2060
Lys Gly Ile Lys Thr Ser Leu Ser Lys Leu Lys Ser Val Val Ser Gly
2065 2070 2075 2080
Asp Ile Leu Ser Tyr Ser Ile Ala Gly Arg Asn Glu Val Phe Ser Asn
2085 2090 2095
Lys Leu Ile Asn His Lys His Met Asn Ile Leu Lys Trp Leu Asp His
2100 2105 2110
Val Leu Asn Phe Arg Ser Ala Glu Leu Asn Tyr Asn His Leu Tyr Met
2115 2120 2125
Ile Glu Ser Thr Tyr Pro Tyr Leu Ser Glu Leu Leu Asn Ser Leu Thr
2130 2135 2140
Thr Asn Glu Leu Lys Lys Leu Ile Lys Ile Thr Gly Ser Val Leu Tyr
2145 2150 2155 2160
Asn Leu Pro Asn Glu Gln
2165
〈210〉 5
<211> 15219
<212> DNA
〈213〉 respiratory syncytial virus
<400> 5
acgggaaaaa aatgcgtact acaaacttgc acattcgaaa aaaatggggc aaataagaac 60
ttgataagtg ctatttaagt ctaacctttt caatcagaaa tggggtgcaa ttcactgagc 120
atgataaagg ttagattaca aaatttattt gacaatgacg aagtagcatt gttaaaaata 180
acatgttata ctgataaatt aattcttctg accaatgcat tagccaaagc agcaatacat 240
acaattaaat taaacggcat agtttttata catgttataa caagcagtga agtgtgccct 300
gataacaata ttgtagtgaa atctaacttt acaacaatgc caatactaca aaatggagga 360
tacatatggg aattgattga gttgacacac tgctctcaat taaacggttt aatggatgat 420
aattgtgaaa tcaaattttc taaaagacta agtgactcag taatgactaa ttatatgaat 480
caaatatctg acttacttgg gcttgatctc aattcatgaa ttatgtttag tctaattcaa 540
tagacatgtg tttattacca ttttagttaa tataaaaact catcaaaggg aaatggggca 600
aataaactca cctaatcaat caaaccatga gcactacaaa tgacaacact actatgcaaa 660
gattgatgat cacagacatg agacccctgt caatggattc aataataaca tctcttacca 720
aagaaatcat cacacacaaa ttcatatact tgataaacaa tgaatgtatt gtaagaaaac 780
ttgatgaaag acaagctaca tttacattct tagtcaatta tgagatgaag ctactgcaca 840
aagtagggag taccaaatac aaaaaataca ctgaatataa tacaaaatat ggcactttcc 900
ccatgcctat atttatcaat cacggcgggt ttctagaatg tattggcatt aagcctacaa 960
aacacactcc tataatatac aaatatgacc tcaacccgtg aattccaaca aaaaaaccaa 1020
cccaaccaaa ccaaactatt cctcaaacaa cagtgctcaa tagttaagaa ggagctaatc 1080
cattttagta attaaaaata aaagtaaagc caataacata aattggggca aatacaaaga 1140
tggctcttag caaagtcaag ttgaatgata cattaaataa ggatcagctg ctgtcatcca 1200
gcaaatacac tattcaacgt agtacaggag ataatattga cactcccaat tatgatgtgc 1260
aaaaacacct aaacaaacta tgtggtatgc tattaatcac tgaagatgca aatcataaat 1320
tcacaggatt aataggtatg ttatatgcta tgtccaggtt aggaagggaa gacactataa 1380
agatacttaa agatgctgga tatcatgtta aagctaatgg agtagatata acaacatatc 1440
gtcaagatat aaatggaaag gaaatgaaat tcgaagtatt aacattatca agcttgacat 1500
cagaaataca agtcaatatt gagatagaat ctagaaagtc ctacaaaaaa atgctaaaag 1560
agatgggaga agtggctcca gaatataggc atgattctcc agactgtggg atgataatac 1620
tgtgtatagc tgcacttgtg ataaccaaat tagcagcagg agacagatca ggtcttacag 1680
cagtaattag gagggcaaac aatgtcttaa aaaacgaaat aaaacgatac aagggcctca 1740
taccaaagga tatagctaac agtttttatg aagtgtttga aaaacaccct catcttatag 1800
atgttttcgt gcactttggc attgcacaat catccacaag agggggtagt agagttgaag 1860
gaatctttgc aggattgttt atgaatgcct atggttcagg gcaagtaatg ctaagatggg 1920
gagttttagc caaatctgta aaaaatatca tgctaggaca tgctagtgtc caggcagaaa 1980
tggagcaagt tgtggaagtc tatgagtatg cacagaagtt gggaggagaa gctggattct 2040
accatatatt gaacaatcca aaagcatcat tgctgtcatt aactcaattt cccaacttct 2100
caagtgtggt cctaggcaat gcagcaggtc taggcataat gggagagtat agaggtacac 2160
caagaaacca ggatctttat gatgcagcta aagcatatgc agagcaactc aaagaaaatg 2220
gagtaataaa ctacagtgta ttagacttaa cagcagaaga attggaagcc ataaagcatc 2280
aactcaaccc caaagaagat gatgtagagc tttaagttaa caaaaaatac ggggcaaata 2340
agtcaacatg gagaagtttg cacctgaatt tcatggagaa gatgcaaata acaaagctac 2400
caaattccta gaatcaataa agggcaagtt cgcatcatcc aaagatccta agaagaaaga 2460
tagcataata tctgttaact caatagatat agaagtaact aaagagagcc cgataacatc 2520
tggcaccaac atcatcaatc caacaagtga agccgacagt accccagaaa caaaagccaa 2580
ctacccaaga aaacccctag taagcttcaa agaagatctc accccaagtg acaacccttt 2640
ttctaagttg tacaaggaaa caatagaaac atttgataac aatgaagaag aatctagcta 2700
ctcatatgaa gagataaatg atcaaacaaa tgacaacatt acagcaagac tagatagaat 2760
tgatgaaaaa ttaagtgaaa tattaggaat gctccataca ttagtagttg caagtgcagg 2820
acccacttca gctcgcgatg gaataagaga tgctatggtt ggtctaagag aagagatgat 2880
agaaaaaata agagcggaag cattaatgac caatgatagg ttagaggcta tggcaagact 2940
taggaatgag gaaagcgaaa aaatggcaaa agacacctca gatgaagtgt ctcttaatcc 3000
aacttccaaa aaattgagtg acttgttgga agacaacgat agtgacaatg atctatcact 3060
tgatgatttt tgatcagcga tcaactcact cagcaatcaa caacatcaat aaaacagaca 3120
tcaatccatt gaatcaactg ccagaccgaa caaacaaacg tccatcagta gaaccaccaa 3180
ccaatcaatc aaccaattga tcaatcagca acccgacaaa attaacaata tagtaacaaa 3240
aaaagaacaa gatggggcaa atatggaaac atacgtgaac aagcttcacg aaggctccac 3300
atacacagca gctgttcagt acaatgttct agaaaaagat gatgatcctg catcactaac 3360
aatatgggtg cctatgttcc agtcatctgt gccagcagac ttgctcataa aagaacttgc 3420
aagcatcaat atactagtga agcagatctc tacgcccaaa ggaccttcac tacgagtcac 3480
gattaactca agaagtgctg tgctggctca aatgcctagt aatttcatca taagcgcaaa 3540
tgtatcatta gatgaaagaa gcaaattagc atatgatgta actacacctt gtgaaatcaa 3600
agcatgcagt ctaacatgct taaaagtaaa aagtatgtta actacagtca aagatcttac 3660
catgaagaca ttcaacccca ctcatgagat cattgctcta tgtgaatttg aaaatattat 3720
gacatcaaaa agagtaataa taccaaccta tctaagatca attagtgtca agaacaagga 3780
tctgaactca ctagaaaata tagcaaccac cgaattcaaa aatgctatca ccaatgcaaa 3840
aattattcct tatgcaggat tagtgttagt tatcacagtt actgacaata aaggagcatt 3900
caaatatatc aaaccacaga gtcaatttat agtagatctt ggtgcctacc tagaaaaaga 3960
gagcatatat tatgtgacta ctaattggaa gcatacagct acacgttttt caatcaaacc 4020
actagaggat taaacttaat tatcaacact gaatgacagg tccacatata tcctcaaact 4080
acacactata tccaaacatc ataaacatct acactacaca cttcatcaca caaaccaatc 4140
ccactcaaaa tccaaaatca ctaccagcca ctatccgcta gacctagagt gcgaataggc 4200
aaataaaacc aaaatatggg gtaaatagac attagttaga gttcaatcaa tcttaacaac 4260
catttatacc gccaattcaa cacatatact ataaatctta aaatgggaaa tacatccatc 4320
acaatagaac tcacaagcaa attttggccc tattttacac taatacatat gatcttaact 4380
ctaatctttt tactaattat aatcactatc atgattgcaa cactaaataa gctaagtgaa 4440
cacaaagcat tctgcaacaa aactcttgaa ctaggacaga tgtaccaaat caacacacag 4500
agttccacca ttatgctgtg tcaaaccata atcctgtata tacaaacaaa caaatccaat 4560
cctctcacag agtcacggtg tcgcaaaacc acgctaacca tcatggtagc atagagtagt 4620
tatttaaaaa ttaacataat gatgaattgt tagtatgaga tcaaaaacaa cattggggca 4680
aatgcaacca tgtccaaaca caagaatcaa cgcactgcca ggactctaga aaagacctgg 4740
gatactctta atcatctaat tgtaatatcc tcttgtttat acagattaaa tttaaaatct 4800
atagcacaaa tagcactatc agttttggca atgataatct caacctctct cataattgca 4860
gccataatat tcatcatctc tgccaatcac aaagttacac taacaacggt cacagttcaa 4920
acaataaaaa accacactga aaaaaacatc accacctacc ctactcaagt ctcaccagaa 4980
agggttagtt catccaagca acccacaacc acatcaccaa tccacacaag ttcagctaca 5040
acatcaccca atacaaaatc agaaacacac catacaacag cacaaaccaa aggcagaacc 5100
accacttcaa cacagaccaa caagccaagc acaaaaccac gtccaaaaaa tccaccaaaa 5160
aaagatgatt accattttga agtgttcaac ttcgttccct gcagtatatg tggcaacaat 5220
caactttgca aatccatctg caaaacaata ccaagcaaca aaccaaagaa gaaaccaacc 5280
atcaaaccca caaacaaacc aaccaccaaa accacaaaca aaagagaccc aaaaacacca 5340
gccaaaacga cgaaaaaaga aactaccacc aacccaacaa aaaaactaac cctcaagacc 5400
acagaaagag acaccagcac ctcacaatcc actgcactcg acacaaccac attaaaacac 5460
acagtccaac agcaatccct cctctcaacc acccccgaaa acacacccaa ctccacacaa 5520
acacccacag catccgagcc ctccacacca aactccaccc aaaaaaccca gccacatgct 5580
tagttattca aaaactacat cttagcagag aaccgtgatc tatcaagcaa gaacgaaatt 5640
aaacctgggg caaataacca tggagttgat gatccacaag tcaagtgcaa tcttcctaac 5700
tcttgctatt aatgcattgt acctcacctc aagtcagaac ataactgagg agttttacca 5760
atcgacatgt agtgcagtta gcagaggtta ttttagtgct ttaagaacag gttggtatac 5820
tagtgtcata acaatagaat taagtaatat aaaagaaacc aaatgcaatg gaactgacac 5880
taaagtaaaa cttatgaaac aagaattaga taagtataag aatgcagtaa cagaattaca 5940
gctacttatg caaaacacac cagctgtcaa caaccgggcc agaagagaag caccacagta 6000
tatgaactac acaatcaata ccactaaaaa cctaaatgta tcaataagca agaagaggaa 6060
acgaagattt ctaggcttct tgttaggtgt gggatctgca atagcaagtg gtatagctgt 6120
atcaaaagtt ctacaccttg aaggagaagt gaacaagatc aaaaatgctt tgttgtctac 6180
aaacaaagct gtagtcagtt tatcaaatgg ggtcagtgtt ttaaccagca aagtgttaga 6240
tctcaagaat tacataaata accaattatt acccatagta aatcaacaga gctgtcgcat 6300
ctccaacatt gaaacagtta tagaattcca gcagaagaac agcagattgt tggaaatcac 6360
cagagaattt agtgtcaatg caggtgtaac aacaccttta agcacttaca tgttgacaaa 6420
cagtgagtta ctatcattaa tcaatgatat gcctataaca aatgatcaga aaaaattaat 6480
gtcaagcaat gttcagatag taaggcaaca aagttattcc atcatgtcta taataaagga 6540
agaagtcctt gcatatgttg tacagctgcc tatctatggt gtaatagata caccttgctg 6600
gaaattgcac acatcgcctc tatgcactac caacatcaaa gaaggatcaa atatttgttt 6660
aacaaggact gatagaggat ggtattgtga taatgcagga tcagtatcct tctttccaca 6720
ggctgacact tgtaaagtac agtccaatcg agtattttgt gacactatga acagtttgac 6780
attaccaagt gaagtcagcc tttgtaacac tgacatattc aattccaagt atgactgcaa 6840
aattatgaca tcaaaaacag acataagcag ctcagtaatt acttctcttg gagctatagt 6900
gtcatgctat ggtaaaacta aatgcactgc atccaacaaa aatcgtggga ttataaagac 6960
attttctaat ggttgtgact atgtgtcaaa caaaggagta gatactgtgt cagtgggcaa 7020
cactttatac tatgtaaaca agctggaagg caagaacctt tatgtaaaag gggaacctat 7080
aataaattac tatgaccctc tagtgtttcc ttctgatgag tttgatgcat caatatctca 7140
agtcaatgaa aaaatcaatc aaagtttagc ttttattcgt agatctgatg aattactaca 7200
taatgtaaat actggcaaat ctactacaaa tattatgata actacaatta ttatagtaat 7260
cattgtagta ttgttatcat taatagctat tggtttactg ttgtattgta aagccaaaaa 7320
cacaccagtt acactaagca aagaccaact aagtggaatc aataatattg cattcagcaa 7380
atagacaaaa aaccacctga tcatgtttca acaacaatct gctgaccacc aatcccaaat 7440
caacttacaa caaatatttc aacatcacag tacaggctga atcatttcct cacatcatgc 7500
tacccacata actaagctag atccttaact tatagttaca taaaaacctc aagtatcaca 7560
atcaaccact aaatcaacac atcattcaca aaattaacag ctggggcaaa tatgtcgcga 7620
agaaatcctt gtaaatttga gattagaggt cattgcttga atggtagaag atgtcactac 7680
agtcataatt actttgaatg gcctcctcat gcattactag tgaggcaaaa cttcatgtta 7740
aacaagatac tcaagtcaat ggacaaaagc atagacactt tgtctgaaat aagtggagct 7800
gctgaactgg atagaacaga agaatatgct cttggtatag ttggagtgct agagagttac 7860
ataggatcta taaacaacat aacaaaacaa tcagcatgtg ttgctatgag taaacttctt 7920
attgagatca atagtgatga cattaaaaag cttagagata atgaagaacc caattcacct 7980
aagataagag tgtacaatac tgttatatca tacattgaga gcaatagaaa aaacaacaag 8040
caaaccatcc atctgctcaa gagactacca gcagacgtgc tgaagaagac aataaagaac 8100
acattagata tccacaaaag cataaccata agcaatccaa aagagtcaac tgtgaatgat 8160
caaaatgacc aaaccaaaaa taatgatatt accggataaa tatccttgta gtatatcatc 8220
catattgatc tcaagtgaaa gcatggttgc tacattcaat cataaaaaca tattacaatt 8280
taaccataac tatttggata accaccagcg tttattaaat catatatttg atgaaattca 8340
ttggacacct aaaaacttat tagatgccac tcaacaattt ctccaacatc ttaacatccc 8400
tgaagatata tatacagtat atatattagt gtcataatgc ttgaccataa cgactctatg 8460
tcatccaacc ataaaactat tttgataagg ttatgggaca aaatggatcc cattattaat 8520
ggaaactctg ctaatgtgta tctaactgat agttatttaa aaggtgttat ctctttttca 8580
gagtgtaatg ctttagggag ttatcttttt aacggccctt atcttaaaaa tgattacacc 8640
aacttaatta gtagacaaag cccactacta gagcatatga atcttaaaaa actaactata 8700
acacagtcat taatatctag atatcataaa ggtgaactga aattagaaga accaacttat 8760
ttccagtcat tacttatgac atataaaagt atgtcctcgt ctgaacaaat tgctacaact 8820
aacttactta aaaaaataat acgaagagcc atagaaataa gtgatgtaaa ggtgtacgcc 8880
atcttgaata aactaggatt aaaggaaaag gacagagtta agcccaacaa taattcaggt 8940
gatgaaaact cagtacttac aaccataatt aaagatgata tactttcggc tgtggaaaac 9000
aatcaatcat atacaaattc agacaaaagt cactcagtaa atcaaaatat cactatcaaa 9060
acaacactct tgaaaaaatt gatgtgttca atgcaacatc ctccatcatg gttaatacac 9120
tggttcaatt tatatacaaa attaaataac atattaacac aatatcgatc aaatgaggta 9180
aaaagtcatg ggtttatatt aatagataat caaactttaa gtggttttca gtttatttta 9240
aatcaatatg gttgtatcgt ttatcataaa ggactcaaaa aaatcacaac tactacttac 9300
aatcaatttt tgacatggaa agacatcagc cttagcagat taaatgtttg cttaattact 9360
tggataagta attgtttaaa tacattaaac aaaagcttag ggctgagatg tggattcaat 9420
aatgttgtgt tatcacaatt atttctttat ggagattgta tactgaaatt atttcataat 9480
gaaggcttct acataataaa agaagtagag ggatttatta tgtctttaat tctaaacata 9540
acagaagaag atcaatttaa gaaacgattt tataatagca tgctaaataa catcacagat 9600
gcagctatta aggctcaaaa ggacctacta tcaagagtat gtcacacttt attagacaag 9660
acagtgtctg ataatatcat aaatggtaaa tggataatcc tattaagtaa atttcttaaa 9720
ttgattaagc ttgcaggtga taataatctc aataacttga gtgagctata ttttctcttc 9780
agaatctttg gacatccaat ggtcgatgaa agacaagcaa tggattctgt aagaattaac 9840
tgtaatgaaa ctaggttcta cttattaagt agtctaagta cattaagagg tgctttcatt 9900
tatagaatca taaaagggtt tgtaaatacc tacaacagat ggcccacctt aaggaatgct 9960
attgtcctac ctctaagatg gttaaactac tataaactta atacttatcc atctctactt 10020
gaaatcacag aaaatgattt gattatttta tcaggattgc ggttctatcg tgagtttcat 10080
ctgcctaaaa aagtggatct tgaaatgata ataaatgaca aagccatttc acctccaaaa 10140
gatctaatat ggactagttt tcctagaaat tacatgccat cacatataca aaattatata 10200
gaacatgaaa agttgaagtt ctctgaaagc gacagatcga gaagagtact agagtattac 10260
ttgagagata ataaattcaa tgaatgcgat ctatacaatt gtgtagtcaa tcaaagctat 10320
ctcaacaact ctaatcacgt ggtatcacta actggtaaag aaagagagct cagtgtaggt 10380
agaatgtttg ctatgcaacc aggtatgttt aggcaaatcc aaatcttagc agagaaaatg 10440
atagctgaaa atattttaca attcttccct gagagtttga caagatatgg tgatctagag 10500
cttcaaaaga tattagaatt aaaagcagga ataagcaaca agtcaaatcg ttataatgat 10560
aactacaaca attatatcag taaatgttct atcattacag atcttagcaa attcaatcag 10620
gcatttagat atgaaacatc atgtatctgc agtgatgtat tagatgaact gcatggagta 10680
caatctctgt tctcttggtt gcatttaaca atacctcttg tcacaataat atgtacatat 10740
agacatgcac ctcctttcat aaaggatcat gttgttaatc ttaatgaggt tgatgaacaa 10800
agtggattat acagatatca tatgggtggt attgagggct ggtgtcaaaa actgtggacc 10860
attgaagcta tatcattatt agatctaata tctctcaaag ggaaattctc tatcacagct 10920
ctgataaatg gtgataatca gtcaattgat ataagcaaac cagttagact tatagagggt 10980
cagacccatg cacaagcaga ttatttgtta gcattaaata gccttaaatt gttatataaa 11040
gagtatgcag gtataggcca taagcttaag ggaacagaga cctatatatc ccgagatatg 11100
cagttcatga gcaaaacaat ccagcacaat ggagtgtact atccagccag tatcaaaaaa 11160
gtcctgagag taggtccatg gataaacacg atacttgatg attttaaagt tagtttagaa 11220
tctataggca gcttaacaca ggagttagaa tacagaggag aaagcttatt atgcagttta 11280
atatttagga acatttggtt atacaatcaa attgctttgc aactccgaaa tcatgcatta 11340
tgtaacaata agctatattt agatatattg aaagtattaa aacacttaaa aacttttttt 11400
aatcttgata gcattgatat ggctttatca ttgtatatga atttgcctat gctgtttggt 11460
ggtggtgatc ctaatttgtt atatcgaagc ttttatagga gaactccaga cttccttaca 11520
gaagctatag tacattcagt gtttgtgttg agctattata ctggtcacga tttacaagat 11580
aagctccagg atcttccaga tgatagactg aacaaattct tgacatgtgt catcacattt 11640
gataaaaatc ccaatgccga gtttgtaaca ttgatgaggg atccacaggc tttagggtct 11700
gaaaggcaag ctaaaattac tagtgagatt aatagattag cagtaacaga agtcttaagt 11760
atagccccaa acaaaatatt ttctaaaagt gcacaacatt atactaccac tgagattgat 11820
ctaaatgaca ttatgcaaaa tatagaacca acttaccctc atggattaag agttgtttat 11880
gaaagtttac ctttttataa agcagaaaaa atagttaatc ttatatcagg aacaaaatcc 11940
ataactaata tacttgaaaa aacatcagca atagatacaa ctgatattaa tagggctact 12000
gatatgatga ggaaaaatat aactttactt ataaggatac ttccactaga ttgtaacaaa 12060
gacaaaagag agttattaag tttagaaaat cttagtataa ctgaattaag caagtatgta 12120
agagaaagat cttggtcatt atccaatata gtaggagtaa catcgccaag tattatgttc 12180
acaatgaaca ttaaatatac aactagcact atagccagtg gtataataat agaaaaatat 12240
aatgttaata gtttaactcg tggtgaaaga ggacccacca agccatgggt aggctcatcc 12300
acgcaggaga aaaaaacaat gccagtgtac aacagacaag ttttaaccaa aaagcaaaga 12360
gaccaaatag atttattagc aaaattagac tgggtatatg catccataga caacaaagat 12420
gaattcatgg aagaactgag tactggaaca cttggactgt catatgaaaa agccaaaaag 12480
ttgtttccac aatatctaag tgtcaattat ttacaccgtt taacagtcag tagtagacca 12540
tgtgaattcc ctgcatcaat accagcttat agaacaacaa attatcattt tgatactagt 12600
cctatcaatc atgtattaac agaaaagtat ggagatgaag atatcgacat tgtgtttcaa 12660
aattgcataa gttttggtct tagcctgatg tcggttgtgg aacaattcac aaacatatgt 12720
cctaatagaa ttattctcat accgaagctg aatgagatac atttgatgaa acctcctata 12780
tttacaggag atgttgatat catcaagttg aagcaagtga tacaaaagca gcacatgttc 12840
ctaccagata aaataagttt aacccaatat gtagaattat tcttaagtaa caaagcactt 12900
aaatctggat ctcacatcaa ctctaattta atattagtac ataaaatgtc tgattatttt 12960
cataatgctt atattttaag tactaattta gctggacatt ggattctgat tattcaactt 13020
atgaaagatt caaaaggtat ttttgaaaaa gattggggag aggggtacat aactgatcat 13080
atgttcatta atttgaatgt tttctttaat gcttataaga cttatttgct atgttttcat 13140
aaaggttatg gtaaagcaaa attagaatgt gatatgaaca cttcagatct tctttgtgtt 13200
ttggagttaa tagacagtag ctactggaaa tctatgtcta aagttttcct agaacaaaaa 13260
gtcataaaat acatagtcaa tcaagacaca agtttgcgta gaataaaagg ctgtcacagt 13320
tttaagttgt ggtttttaaa acgccttaat aatgctaaat ttaccgtatg cccttgggtt 13380
gttaacatag attatcaccc aacacacatg aaagctatat tatcttacat agatttagtt 13440
agaatggggt taataaatgt agataaatta accattaaaa ataaaaacaa attcaatgat 13500
gaattttaca catcaaatct cttttacatt agttataact tttcagacaa cactcatttg 13560
ctaacaaaac aaataagaat tgctaattca gaattagaag ataattataa caaactatat 13620
cacccaaccc cagaaacttt agaaaatatg tcattaattc ctgttaaaag taataatagt 13680
aacaaaccta aattttgtat aagtggaaat accgaatcta tgatgatgtc aacattctct 13740
agtaaaatgc atattaaatc ttccactgtt accacaagat tcaattatag caaacaagac 13800
ttgtacaatt tatttccaat tgttgtgata gacaagatta tagatcattc aggtaataca 13860
gcaaaatcta accaacttta caccaccact tcacatcaga catctttagt aaggaatagt 13920
gcatcacttt attgcatgct tccttggcat catgtcaata gatttaactt tgtatttagt 13980
tccacaggat gcaagatcag tatagagtat attttaaaag atcttaagat taaggacccc 14040
agttgtatag cattcatagg tgaaggagct ggtaacttat tattacgtac ggtagtagaa 14100
cttcatccag acataagata catttacaga agtttaaaag attgcaatga tcatagttta 14160
cctattgaat ttctaaggtt atacaacggg catataaaca tagattatgg tgagaattta 14220
accattcctg ctacagatgc aactaataac attcattggt cttatttaca tataaaattt 14280
gcagaaccta ttagcatctt tgtctgcgat gctgaattac ctgttacagc caattggagt 14340
aaaattataa ttgaatggag taagcatgta agaaagtgca agtactgttc ttctgtaaat 14400
agatgcattt taattgcaaa atatcatgct caagatgaca ttgatttcaa attagataac 14460
attactatat taaaaactta cgtgtgccta ggtagcaagt taaaaggatc tgaagtttac 14520
ttaatcctta caataggccc tgcaaatata cttcctgttt ttgatgttgt acaaaatgct 14580
aaattgatac tttcaagaac taaaaatttc attatgccta aaaaaactga caaggaatct 14640
atcgatgcaa atattaaaag cttaatacct ttcctttgtt accctataac aaaaaaagga 14700
attaagactt cattgtcaaa attgaagagt gtagttaatg gagatatatt atcatattct 14760
atagctggac gtaatgaagt attcagcaac aagcttataa accacaagca tatgaatatc 14820
ctaaaatggc tagatcatgt tttaaatttt agatcagctg aacttaatta caatcattta 14880
tacatgatag agtccacata tccttactta agtgaattgt taaatagttt aacaaccaat 14940
gagctcaaga agctgattaa aataacaggt agtgtgctat acaaccttcc caacgaacag 15000
tagtttaaaa tatcattaac aagtttggtc aaatttagat gctaacacat cattatatta 15060
tagttattaa agaatataca aacttttcaa taatttagca tattgattcc aaaattatca 15120
ttttagtctt aaggggttaa ataaaagtct aaaactaaca attatacatg tgcattcaca 15180
acacaacgag acattagttt ttgacacttt ttttctcgt 15219
〈210〉 6
<211> 2166
<212> PRT
〈213〉 respiratory syncytial virus
<400> 6
Met Asp Pro Ile Ile Asn Gly Asn Ser Ala Asn Val Tyr Leu Thr Asp
1 5 10 15
Ser Tyr Leu Lys Gly Val Ile Ser Phe Ser Glu Cys Asn Ala Leu Gly
20 25 30
Ser Tyr Leu Phe Asn Gly Pro Tyr Leu Lys Asn Asp Tyr Thr Asn Leu
35 40 45
Ile Ser Arg Gln Ser Pro Leu Leu Glu His Met Asn Leu Lys Lys Leu
50 55 60
Thr Ile Thr Gln Ser Leu Ile Ser Arg Tyr His Lys Gly Glu Leu Lys
65 70 75 80
Leu Glu Glu Pro Thr Tyr Phe Gln Ser Leu Leu Met Thr Tyr Lys Ser
85 90 95
Met Ser Ser Ser Glu Gln Ile Ala Thr Thr Asn Leu Leu Lys Lys Ile
100 105 110
Ile Arg Arg Ala Ile Glu Ile Ser Asp Val Lys Val Tyr Ala Ile Leu
115 120 125
Asn Lys Leu Gly Leu Lys Glu Lys Asp Arg Val Lys Pro Asn Asn Asn
130 135 140
Ser Gly Asp Glu Asn Ser Val Leu Thr Thr Ile Lys Asp Asp Ile
145 150 155 160
Leu Ser Ala Val Glu Asn Asn Gln Ser Tyr Thr Asn Ser Asp Lys Ser
165 170 175
His Ser Val Asn Gln Asn Ile Thr Ile Lys Thr Thr Leu Leu Lys Lys
180 185 190
Leu Met Cys Ser Met Gln His Pro Pro Ser Trp Leu Ile His Trp Phe
195 200 205
Asn Leu Tyr Thr Lys Leu Asn Asn Ile Leu Thr Gln Tyr Arg Ser Asn
210 215 220
Glu Val Lys Ser His Gly Phe Ile Leu Ile Asp Asn Gln Thr Leu Ser
225 230 235 240
Gly Phe Gln Phe Ile Leu Asn Gln Tyr Gly Cys Ile Val Tyr His Lys
245 250 255
Gly Leu Lys Lys Ile Thr Thr Thr Thr Tyr Asn Gln Phe Leu Thr Trp
260 265 270
Lys Asp Ile Ser Leu Ser Arg Leu Asn Val Cys Leu Ile Thr Trp Ile
275 280 285
Ser Asn Cys Leu Asn Thr Leu Asn Lys Ser Leu Gly Leu Arg Cys Gly
290 295 300
Phe Asn Asn Val Val Leu Ser Gln Leu Phe Leu Tyr Gly Asp Cys Ile
305 310 315 320
Leu Lys Leu Phe His Asn Glu Gly Phe Tyr Ile Ile Lys Glu Val Glu
325 330 335
Gly Phe Ile Met Ser Leu Ile Leu Asn Ile Thr Glu Glu Asp Gln Phe
340 345 350
Lys Lys Arg Phe Tyr Asn Ser Met Leu Asn Asn Ile Thr Asp Ala Ala
355 360 365
Ile Lys Ala Gln Lys Asp Leu Leu Ser Arg Val Cys His Thr Leu Leu
370 375 380
Asp Lys Thr Val Ser Asp Asn Ile Ile Asn Gly Lys Trp Ile Ile Leu
385 390 395 400
Leu Ser Lys Phe Leu Lys Leu Ile Lys Leu Ala Gly Asp Asn Asn Leu
405 410 415
Asn Asn Leu Ser Glu Leu Tyr Phe Leu Phe Arg Ile Phe Gly His Pro
420 425 430
Met Val Asp Glu Arg Gln Ala Met Asp Ser Val Arg Ile Asn Cys Asn
435 440 445
Glu Thr Arg Phe Tyr Leu Leu Ser Ser Leu Ser Thr Leu Arg Gly Ala
450 455 460
Phe Ile Tyr Arg Ile Ile Lys Gly Phe Val Asn Thr Tyr Asn Arg Trp
465 470 475 480
Pro Thr Leu Arg Asn Ala Ile Val Leu Pro Leu Arg Trp Leu Asn Tyr
485 490 495
Tyr Lys Leu Asn Thr Tyr Pro Ser Leu Leu Glu Ile Thr Glu Asn Asp
500 505 510
Leu Ile Ile Leu Ser Gly Leu Arg Phe Tyr Arg Glu Phe His Leu Pro
515 520 525
Lys Lys Val Asp Leu Glu Met Ile Ile Asn Asp Lys Ala Ile Ser Pro
530 535 540
Pro Lys Asp Leu Ile Trp Thr Ser Phe Pro Arg Asn Tyr Met Pro Ser
545 550 555 560
His Ile Gln Asn Tyr Ile Glu His Glu Lys Leu Lys Phe Ser Glu Ser
565 570 575
Asp Arg Ser Arg Arg Val Leu Glu Tyr Tyr Leu Arg Asp Asn Lys Phe
580 585 590
Asn Glu Cys Asp Leu Tyr Asn Cys Val Val Asn Gln Ser Tyr Leu Asn
595 600 605
Asn Ser Asn His Val Val Ser Leu Thr Gly Lys Glu Arg Glu Leu Ser
610 615 620
Val Gly Arg Met Phe Ala Met Gln Pro Gly Met Phe Arg Gln Ile Gln
625 630 635 640
Ile Leu Ala Glu Lys Met Ile Ala Glu Asn Ile Leu Gln Phe Phe Pro
645 650 655
Glu Ser Leu Thr Arg Tyr Gly Asp Leu Glu Leu Gln Lys Ile Leu Glu
660 665 670
Leu Lys Ala Gly Ile Ser Asn Lys Ser Asn Arg Tyr Asn Asp Asn Tyr
675 680 685
Asn Asn Tyr Ile Ser Lys Cys Ser Ile Ile Thr Asp Leu Ser Lys Phe
690 695 700
Asn Gln Ala Phe Arg Tyr Glu Thr Ser Cys Ile Cys Ser Asp Val Leu
705 710 715 720
Asp Glu Leu His Gly Val Gln Ser Leu Phe Ser Trp Leu His Leu Thr
725 730 735
Ile Pro Leu Val Thr Ile Ile Cys Thr Tyr Arg His Ala Pro Pro Phe
740 745 750
Ile Lys Asp His Val Val Asn Leu Asn Glu Val Asp Glu Gln Ser Gly
755 760 765
Leu Tyr Arg Tyr His Met Gly Gly Ile Glu Gly Trp Cys Gln Lys Leu
770 775 780
Trp Thr Ile Glu Ala Ile Ser Leu Leu Asp Leu Ile Ser Leu Lys Gly
785 790 795 800
Lys Phe Ser Ile Thr Ala Leu Ile Asn Gly Asp Asn Gln Ser Ile Asp
805 810 815
Ile Ser Lys Pro Val Arg Leu Ile Glu Gly Gln Thr His Ala Gln Ala
820 825 830
Asp Tyr Leu Leu Ala Leu Asn Ser Leu Lys Leu Leu Tyr Lys Glu Tyr
835 840 845
Ala Gly Ile Gly His Lys Leu Lys Gly Thr Glu Thr Tyr Ile Ser Arg
850 855 860
Asp Met Gln Phe Met Ser Lys Thr Ile Gln His Asn Gly Val Tyr Tyr
865 870 875 880
Pro Ala Ser Ile Lys Lys Val Leu Arg Val Gly Pro Trp Ile Asn Thr
885 890 895
Ile Leu Asp Asp Phe Lys Val Ser Leu Glu Ser Ile Gly Ser Leu Thr
900 905 910
Gln Glu Leu Glu Tyr Arg Gly Glu Ser Leu Leu Cys Ser Leu Ile Phe
915 920 925
Arg Asn Ile Trp Leu Tyr Asn Gln Ile Ala Leu Gln Leu Arg Asn His
930 935 940
Ala Leu Cys Asn Asn Lys Leu Tyr Leu Asp Ile Leu Lys Val Leu Lys
945 950 955 960
His Leu Lys Thr Phe Phe Asn Leu Asp Ser Ile Asp Met Ala Leu Ser
965 970 975
Leu Tyr Met Asn Leu Pro Met Leu Phe Gly Gly Gly Asp Pro Asn Leu
980 985 990
Leu Tyr Arg Ser Phe Tyr Arg Arg Thr Pro Asp Phe Leu Thr Glu Ala
995 1000 1005
Ile Val His Ser Val Phe Val Leu Ser Tyr Tyr Thr Gly His Asp Leu
1010 1015 1020
Gln Asp Lys Leu Gln Asp Leu Pro Asp Asp Arg Leu Asn Lys Phe Leu
1025 1030 1035 1040
Thr Cys Val Ile Thr Phe Asp Lys Asn Pro Asn Ala Glu Phe Val Thr
1045 1050 1055
Leu Met Arg Asp Pro Gln Ala Leu Gly Ser Glu Arg Gln Ala Lys Ile
1060 1065 1070
Thr Ser Glu Ile Asn Arg Leu Ala Val Thr Glu Val Leu Ser Ile Ala
1075 1080 1085
Pro Asn Lys Ile Phe Ser Lys Ser Ala Gln His Tyr Thr Thr Thr Glu
1090 1095 1100
Ile Asp Leu Asn Asp Ile Met Gln Asn Ile Glu Pro Thr Tyr Pro His
1105 1110 1115 1120
Gly Leu Arg Val Val Tyr Glu Ser Leu Pro Phe Tyr Lys Ala Glu Lys
1125 1130 1135
Ile Val Asn Leu Ile Ser Gly Thr Lys Ser Ile Thr Asn Ile Leu Glu
1140 1145 1150
Lys Thr Ser Ala Ile Asp Thr Thr Asp Ile Asn Arg Ala Thr Asp Met
1155 1160 1165
Met Arg Lys Asn Ile Thr Leu Leu Ile Arg Ile Leu Pro Leu Asp Cys
1170 1175 1180
Asn Lys Asp Lys Arg Glu Leu Leu Ser Leu Glu Asn Leu Ser Ile Thr
1185 1190 1195 1200
Glu Leu Ser Lys Tyr Val Arg Glu Arg Ser Trp Ser Leu Ser Asn Ile
1205 1210 1215
Val Gly Val Thr Ser Pro Ser Ile Met Phe Thr Met Asn Ile Lys Tyr
1220 1225 1230
Thr Thr Ser Thr Ile Ala Ser Gly Ile Ile Ile Glu Lys Tyr Asn Val
1235 1240 1245
Asn Ser Leu Thr Arg Gly Glu Arg Gly Pro Thr Lys Pro Trp Val Gly
1250 1255 1260
Ser Ser Thr Gln Glu Lys Lys Thr Met Pro Val Tyr Asn Arg Gln Val
1265 1270 1275 1280
Leu Thr Lys Lys Gln Arg Asp Gln Ile Asp Leu Leu Ala Lys Leu Asp
1285 1290 1295
Trp Val Tyr Ala Ser Ile Asp Asn Lys Asp Glu Phe Met Glu Glu Leu
1300 1305 1310
Ser Thr Gly Thr Leu Gly Leu Ser Tyr Glu Lys Ala Lys Lys Leu Phe
1315 1320 1325
Pro Gln Tyr Leu Ser Val Asn Tyr Leu His Arg Leu Thr Val Ser Ser
1330 1335 1340
Arg Pro Cys Glu Phe Pro Ala Ser Ile Pro Ala Tyr Arg Thr Thr Asn
1345 1350 1355 1360
Tyr His Phe Asp Thr Ser Pro Ile Asn His Val Leu Thr Glu Lys Tyr
1365 1370 1375
Gly Asp Glu Asp Ile Asp Ile Val Phe Gln Asn Cys Ile Ser Phe Gly
1380 1385 1390
Leu Ser Leu Met Ser Val Val Glu Gln Phe Thr Asn Ile Cys Pro Asn
1395 1400 1405
Arg Ile Ile Leu Ile Pro Lys Leu Asn Glu Ile His Leu Met Lys Pro
1410 1415 1420
Pro Ile Phe Thr Gly Asp Val Asp Ile Ile Lys Leu Lys Gln Val Ile
1425 1430 1435 1440
Gln Lys Gln His Met Phe Leu Pro Asp Lys Ile Ser Leu Thr Gln Tyr
1445 1450 1455
Val Glu Leu Phe Leu Ser Asn Lys Ala Leu Lys Ser Gly Ser His Ile
1460 1465 1470
Asn Ser Asn Leu Ile Leu Val His Lys Met Ser Asp Tyr Phe His Asn
1475 1480 1485
Ala Tyr Ile Leu Ser Thr Asn Leu Ala Gly His Trp Ile Leu Ile Ile
1490 1495 1500
Gln Leu Met Lys Asp Ser Lys Gly Ile Phe Glu Lys Asp Trp Gly Glu
1505 1510 1515 1520
Gly Tyr Ile Thr Asp His Met Phe Ile Asn Leu Asn Val Phe Phe Asn
1525 1530 1535
Ala Tyr Lys Thr Tyr Leu Leu Cys Phe His Lys Gly Tyr Gly Lys Ala
1540 1545 1550
Lys Leu Glu Cys Asp Met Asn Thr Ser Asp Leu Leu Cys Val Leu Glu
1555 1560 1565
Leu Ile Asp Ser Ser Tyr Trp Lys Ser Met Ser Lys Val Phe Leu Glu
1570 1575 1580
Gln Lys Val Ile Lys Tyr Ile Val Asn Gln Asp Thr Ser Leu Arg Arg
1585 1590 1595 1600
Ile Lys Gly Cys His Ser Phe Lys Leu Trp Phe Leu Lys Arg Leu Asn
1605 1610 1615
Asn Ala Lys Phe Thr Val Cys Pro Trp Val Val Asn Ile Asp Tyr His
1620 1625 1630
Pro Thr His Met Lys Ala Ile Leu Ser Tyr Ile Asp Leu Val Arg Met
1635 1640 1645
Gly Leu Ile Asn Val Asp Lys Leu Thr Ile Lys Asn Lys Asn Lys Phe
1650 1655 1660
Asn Asp Glu Phe Tyr Thr Ser Asn Leu Phe Tyr Ile Ser Tyr Asn Phe
1665 1670 1675 1680
Ser Asp Asn Thr His Leu Leu Thr Lys Gln Ile Arg Ile Ala Asn Ser
1685 1690 1695
Glu Leu Glu Asp Asn Tyr Asn Lys Leu Tyr His Pro Thr Pro Glu Thr
1700 1705 1710
Leu Glu Asn Met Ser Leu Ile Pro Val Lys Ser Asn Asn Ser Asn Lys
1715 1720 1725
Pro Lys Phe Cys Ile Ser Gly Asn Thr Glu Ser Met Met Met Ser Thr
1730 1735 1740
Phe Ser Ser Lys Met His Ile Lys Ser Ser Thr Val Thr Thr Arg Phe
1745 1750 1755 1760
Asn Tyr Ser Lys Gln Asp Leu Tyr Asn Leu Phe Pro Ile Val Val Ile
1765 1770 1775
Asp Lys Ile Ile Asp His Ser Gly Asn Thr Ala Lys Ser Asn Gln Leu
1780 1785 1790
Tyr Thr Thr Thr Ser His Gln Thr Ser Leu Val Arg Asn Ser Ala Ser
1795 1800 1805
Leu Tyr Cys Met Leu Pro Trp His His Val Asn Arg Phe Asn Phe Val
1810 1815 1820
Phe Ser Ser Thr Gly Cys Lys Ile Ser Ile Glu Tyr Ile Leu Lys Asp
1825 1830 1835 1840
Leu Lys Ile Lys Asp Pro Ser Cys Ile Ala Phe Ile Gly Glu Gly Ala
1845 1850 1855
Gly Asn Leu Leu Leu Arg Thr Val Val Glu Leu His Pro Asp Ile Arg
1860 1865 1870
Tyr Ile Tyr Arg Ser Leu Lys Asp Cys Asn Asp His Ser Leu Pro Ile
1875 1880 1885
Glu Phe Leu Arg Leu Tyr Asn Gly His Ile Asn Ile Asp Tyr Gly Glu
1890 1895 1900
Asn Leu Thr Ile Pro Ala Thr Asp Ala Thr Asn Asn Ile His Trp Ser
1905 1910 1915 1920
Tyr Leu His Ile Lys Phe Ala Glu Pro Ile Ser Ile Phe Val Cys Asp
1925 1930 1935
Ala Glu Leu Pro Val Thr Ala Asn Trp Ser Lys Ile Ile Glu Trp
1940 1945 1950
Ser Lys His Val Arg Lys Cys Lys Tyr Cys Ser Ser Val Asn Arg Cys
1955 1960 1965
Ile Leu Ile Ala Lys Tyr His Ala Gln Asp Asp Ile Asp Phe Lys Leu
1970 1975 1980
Asp Asn Ile Thr Ile Leu Lys Thr Tyr Val Cys Leu Gly Ser Lys Leu
1985 1990 1995 2000
Lys Gly Ser Glu Val Tyr Leu Ile Leu Thr Ile Gly Pro Ala Asn Ile
2005 2010 2015
Leu Pro Val Phe Asp Val Val Gln Asn Ala Lys Leu Ile Leu Ser Arg
2020 2025 2030
Thr Lys Asn Phe Ile Met Pro Lys Lys Thr Asp Lys Glu Ser Ile Asp
2035 2040 2045
Ala Asn Ile Lys Ser Leu Ile Pro Phe Leu Cys Tyr Pro Ile Thr Lys
2050 2055 2060
Lys Gly Ile Lys Thr Ser Leu Ser Lys Leu Lys Ser Val Val Asn Gly
2065 2070 2075 2080
Asp Ile Leu Ser Tyr Ser Ile Ala Gly Arg Asn Glu Val Phe Ser Asn
2085 2090 2095
Lys Leu Ile Asn His Lys His Met Asn Ile Leu Lys Trp Leu Asp His
2100 2105 2110
Val Leu Asn Phe Arg Ser Ala Glu Leu Asn Tyr Asn His Leu Tyr Met
2115 2120 2125
Ile Glu Ser Thr Tyr Pro Tyr Leu Ser Glu Leu Leu Asn Ser Leu Thr
2130 2135 2140
Thr Asn Glu Leu Lys Lys Leu Ile Lys Ile Thr Gly Ser Val Leu Tyr
2145 2150 2155 2160
Asn Leu Pro Asn Glu Gln
2165
〈210〉 7
<211> 15219
<212> DNA
〈213〉 respiratory syncytial virus
<400> 7
acgggaaaaa aatgcgtact acaaacttgc acattcgaaa aaaatggggc aaataagaac 60
ttgataagtg ctatttaagt ctaacctttt caatcagaaa tggggtgcaa ttcactgagc 120
atgataaagg ttagattaca aaatttattt gacaatgacg aagtagcatt gttaaaaata 180
acatgttata ctgataaatt aattcttctg accaatgcat tagccaaagc agcaatacat 240
acaattaaat taaacggcat agtttttata catgttataa caagcagtga agtgtgccct 300
gataacaata ttgtagtgaa atctaacttt acaacaatgc caatactaca aaatggagga 360
tacatatggg aattgattga gttgacacac tgctctcaat taaacggttt aatggatgat 420
aattgtgaaa tcaaattttc taaaagacta agtgactcag taatgactaa ttatatgaat 480
caaatatctg acttacttgg gcttgatctc aattcatgaa ttatgtttag tctaattcaa 540
tagacatgtg tttattacca ttttagttaa tataaaaact catcaaaggg aaatggggca 600
aataaactca cctaatcaat caaaccatga gcactacaaa tgacaacact actatgcaaa 660
gattgatgat cacagacatg agacccctgt caatggattc aataataaca tctcttacca 720
aagaaatcat cacacacaaa ttcatatact tgataaacaa tgaatgtatt gtaagaaaac 780
ttgatgaaag acaagctaca tttacattct tagtcaatta tgagatgaag ctactgcaca 840
aagtagggag taccaaatac aaaaaataca ctgaatataa tacaaaatat ggcactttcc 900
ccatgcctat atttatcaat cacggcgggt ttctagaatg tattggcatt aagcctacaa 960
aacacactcc tataatatac aaatatgacc tcaacccgtg aattccaaca aaaaaaccaa 1020
cccaaccaaa ccaaactatt cctcaaacaa cagtgctcaa tagttaagaa ggagctaatc 1080
cattttagta attaaaaata aaagtaaagc caataacata aattggggca aatacaaaga 1140
tggctcttag caaagtcaag ttgaatgata cattaaataa ggatcagctg ctgtcatcca 1200
gcaaatacac tattcaacgt agtacaggag ataatattga cactcccaat tatgatgtgc 1260
aaaaacacct aaacaaacta tgtggtatgc tattaatcac tgaagatgca aatcataaat 1320
tcacaggatt aataggtatg ttatatgcta tgtccaggtt aggaagggaa gacactataa 1380
agatacttaa agatgctgga tatcatgtta aagctaatgg agtagatata acaacatatc 1440
gtcaagatat aaatggaaag gaaatgaaat tcgaagtatt aacattatca agcttgacat 1500
cagaaataca agtcaatatt gagatagaat ctagaaagtc ctacaaaaaa atgctaaaag 1560
agatgggaga agtggctcca gaatataggc atgattctcc agactgtggg atgataatac 1620
tgtgtatagc tgcacttgtg ataaccaaat tagcagcagg agacagatca ggtcttacag 1680
cagtaattag gagggcaaac aatgtcttaa aaaacgaaat aaaacgatac aagggcctca 1740
taccaaagga tatagctaac agtttttatg aagtgtttga aaaacaccct catcttatag 1800
atgttttcgt gcactttggc attgcacaat catccacaag agggggtagt agagttgaag 1860
gaatctttgc aggattgttt atgaatgcct atggttcagg gcaagtaatg ctaagatggg 1920
gagttttagc caaatctgta aaaaatatca tgctaggaca tgctagtgtc caggcagaaa 1980
tggagcaagt tgtggaagtc tatgagtatg cacagaagtt gggaggagaa gctggattct 2040
accatatatt gaacaatcca aaagcatcat tgctgtcatt aactcaattt cccaacttct 2100
caagtgtggt cctaggcaat gcagcaggtc taggcataat gggagagtat agaggtacac 2160
caagaaacca ggatctttat gatgcagcta aagcatatgc agagcaactc aaagaaaatg 2220
gagtaataaa ctacagtgta ttagacttaa cagcagaaga attggaagcc ataaagcatc 2280
aactcaaccc caaagaagat gatgtagagc tttaagttaa caaaaaatac ggggcaaata 2340
agtcaacatg gagaagtttg cacctgaatt tcatggagaa gatgcaaata acaaagctac 2400
caaattccta gaatcaataa agggcaagtt cgcatcatcc aaagatccta agaagaaaga 2460
tagcataata tctgttaact caatagatat agaagtaact aaagagagcc cgataacatc 2520
tggcaccaac atcatcaatc caacaagtga agccgacagt accccagaaa caaaagccaa 2580
ctacccaaga aaacccctag taagcttcaa agaagatctc accccaagtg acaacccttt 2640
ttctaagttg tacaaggaaa caatagaaac atttgataac aatgaagaag aatctagcta 2700
ctcatatgaa gagataaatg atcaaacaaa tgacaacatt acagcaagac tagatagaat 2760
tgatgaaaaa ttaagtgaaa tattaggaat gctccataca ttagtagttg caagtgcagg 2820
acccacttca gctcgcgatg gaataagaga tgctatggtt ggtctaagag aagagatgat 2880
agaaaaaata agagcggaag cattaatgac caatgatagg ttagaggcta tggcaagact 2940
taggaatgag gaaagcgaaa aaatggcaaa agacacctca gatgaagtgt ctcttaatcc 3000
aacttccaaa aaattgagtg acttgttgga agacaacgat agtgacaatg atctatcact 3060
tgatgatttt tgatcagcga tcaactcact cagcaatcaa caacatcaat aaaacagaca 3120
tcaatccatt gaatcaactg ccagaccgaa caaacaaacg tccatcagta gaaccaccaa 3180
ccaatcaatc aaccaattga tcaatcagca acccgacaaa attaacaata tagtaacaaa 3240
aaaagaacaa gatggggcaa atatggaaac atacgtgaac aagcttcacg aaggctccac 3300
atacacagca gctgttcagt acaatgttct agaaaaagat gatgatcctg catcactaac 3360
aatatgggtg cctatgttcc agtcatctgt gccagcagac ttgctcataa aagaacttgc 3420
aagcatcaat atactagtga agcagatctc tacgcccaaa ggaccttcac tacgagtcac 3480
gattaactca agaagtgctg tgctggctca aatgcctagt aatttcatca taagcgcaaa 3540
tgtatcatta gatgaaagaa gcaaattagc atatgatgta actacacctt gtgaaatcaa 3600
agcatgcagt ctaacatgct taaaagtaaa aagtatgtta actacagtca aagatcttac 3660
catgaagaca ttcaacccca ctcatgagat cattgctcta tgtgaatttg aaaatattat 3720
gacatcaaaa agagtaataa taccaaccta tctaagatca attagtgtca agaacaagga 3780
tctgaactca ctagaaaata tagcaaccac cgaattcaaa aatgctatca ccaatgcaaa 3840
aattattcct tatgcaggat tagtgttagt tatcacagtt actgacaata aaggagcatt 3900
caaatatatc aaaccacaga gtcaatttat agtagatctt ggtgcctacc tagaaaaaga 3960
gagcatatat tatgtgacta ctaattggaa gcatacagct acacgttttt caatcaaacc 4020
actagaggat taaacttaat tatcaacact gaatgacagg tccacatata tcctcaaact 4080
acacactata tccaaacatc ataaacatct acactacaca cttcatcaca caaaccaatc 4140
ccactcaaaa tccaaaatca ctaccagcca ctatctgcta gacctagagt gcgaataggt 4200
aaataaaacc aaaatatggg gtaaatagac attagttaga gttcaatcaa tcttaacaac 4260
catttatacc gccaattcaa cacatatact ataaatctta aaatgggaaa tacatccatc 4320
acaatagaat tcacaagcaa attttggccc tattttacac taatacatat gatcttaact 4380
ctaatctttt tactaattat aatcactatt atgattgcaa tactaaataa gctaagtgaa 4440
cataaagcat tctgtaacaa aactcttgaa ctaggacaga tgtatcaaat caacacatag 4500
agttctacca ttatgctgtg tcaaattata atcctgtata tataaacaaa caaatccaat 4560
cttctcacag agtcatggtg tcgcaaaacc acgctaacta tcatggtagc atagagtagt 4620
tatttaaaaa ttaacataat gatgaattgt tagtatgaga tcaaaaacaa cattggggca 4680
aatgcaacca tgtccaaaca caagaatcaa cgcactgcca ggactctaga aaagacctgg 4740
gatactctta atcatctaat tgtaatatcc tcttgtttat acagattaaa tttaaaatct 4800
atagcacaaa tagcactatc agttttggca atgataatct caacctctct cataattgca 4860
gccataatat tcatcatctc tgccaatcac aaagttacac taacaacggt cacagttcaa 4920
acaataaaaa accacactga aaaaaacatc accacctacc ctactcaagt ctcaccagaa 4980
agggttagtt catccaagca acccacaacc acatcaccaa tccacacaag ttcagctaca 5040
acatcaccca atacaaaatc agaaacacac catacaacag cacaaaccaa aggcagaacc 5100
accacttcaa cacagaccaa caagccaagc acaaaaccac gtccaaaaaa tccaccaaaa 5160
aaagatgatt accattttga agtgttcaac ttcgttccct gcagtatatg tggcaacaat 5220
caactttgca aatccatctg caaaacaata ccaagcaaca aaccaaagaa gaaaccaacc 5280
atcaaaccca caaacaaacc aaccaccaaa accacaaaca aaagagaccc aaaaacacca 5340
gccaaaacga cgaaaaaaga aactaccacc aacccaacaa aaaaactaac cctcaagacc 5400
acagaaagag acaccagcac ctcacaatcc actgcactcg acacaaccac attaaaacac 5460
acagtccaac agcaatccct cctctcaacc acccccgaaa acacacccaa ctccacacaa 5520
acacccacag catccgagcc ctccacacca aactccaccc aaaaaaccca gccacatgct 5580
tagttattca aaaactacat cttagcagag aaccgtgatc tatcaagcaa gaacgaaatt 5640
aaacctgggg caaataacca tggagttgat gatccacaag tcaagtgcaa tcttcctaac 5700
tcttgctatt aatgcattgt acctcacctc aagtcagaac ataactgagg agttttacca 5760
atcgacatgt agtgcagtta gcagaggtta ttttagtgct ttaagaacag gttggtatac 5820
tagtgtcata acaatagaat taagtaatat aaaagaaacc aaatgcaatg gaactgacac 5880
taaagtaaaa cttatgaaac aagaattaga taagtataag aatgcagtaa cagaattaca 5940
gctacttatg caaaacacac cagctgtcaa caaccgggcc agaagagaag caccacagta 6000
tatgaactac acaatcaata ccactaaaaa cctaaatgta tcaataagca agaagaggaa 6060
acgaagattt ctaggcttct tgttaggtgt gggatctgca atagcaagtg gtatagctgt 6120
atcaaaagtt ctacaccttg aaggagaagt gaacaagatc aaaaatgctt tgttgtctac 6180
aaacaaagct gtagtcagtt tatcaaatgg ggtcagtgtt ttaaccagca aagtgttaga 6240
tctcaagaat tacataaata accaattatt acccatagta aatcaacaga gctgtcgcat 6300
ctccaacatt gaaacagtta tagaattcca gcagaagaac agcagattgt tggaaatcac 6360
cagagaattt agtgtcaatg caggtgtaac aacaccttta agcacttaca tgttgacaaa 6420
cagtgagtta ctatcattaa tcaatgatat gcctataaca aatgatcaga aaaaattaat 6480
gtcaagcaat gttcagatag taaggcaaca aagttattcc atcatgtcta taataaagga 6540
agaagtcctt gcatatgttg tacagctgcc tatctatggt gtaatagata caccttgctg 6600
gaaattgcac acatcgcctc tatgcactac caacatcaaa gaaggatcaa atatttgttt 6660
aacaaggact gatagaggat ggtattgtga taatgcagga tcagtatcct tctttccaca 6720
ggctgacact tgtaaagtac agtccaatcg agtattttgt gacactatga acagtttgac 6780
attaccaagt gaagtcagcc tttgtaacac tgacatattc aattccaagt atgactgcaa 6840
aattatgaca tcaaaaacag acataagcag ctcagtaatt acttctcttg gagctatagt 6900
gtcatgctat ggtaaaacta aatgcactgc atccaacaaa aatcgtggga ttataaagac 6960
attttctaat ggttgtgact atgtgtcaaa caaaggagta gatactgtgt cagtgggcaa 7020
cactttatac tatgtaaaca agctggaagg caagaacctt tatgtaaaag gggaacctat 7080
aataaattac tatgaccctc tagtgtttcc ttctgatgag tttgatgcat caatatctca 7140
agtcaatgaa aaaatcaatc aaagtttagc ttttattcgt agatctgatg aattactaca 7200
taatgtaaat actggcaaat ctactacaaa tattatgata actacaatta ttatagtaat 7260
cattgtagta ttgttatcat taatagctat tggtttactg ttgtattgta aagccaaaaa 7320
cacaccagtt acactaagca aagaccaact aagtggaatc aataatattg cattcagcaa 7380
atagacaaaa aaccacctga tcatgtttca acaacaatct gctgaccacc aatcccaaat 7440
caacttacaa caaatatttc aacatcacag tacaggctga atcatttcct cacatcatgc 7500
tacccacata actaagctag atccttaact tatagttaca taaaaacctc aagtatcaca 7560
atcaaccact aaatcaacac atcattcaca aaattaacag ctggggcaaa tatgtcgcga 7620
agaaatcctt gtaaatttga gattagaggt cattgcttga atggtagaag atgtcactac 7680
agtcataatt actttgaatg gcctcctcat gcattactag tgaggcaaaa cttcatgtta 7740
aacaagatac tcaagtcaat ggacaaaagc atagacactt tgtctgaaat aagtggagct 7800
gctgaactgg atagaacaga agaatatgct cttggtatag ttggagtgct agagagttac 7860
ataggatcta taaacaacat aacaaaacaa tcagcatgtg ttgctatgag taaacttctt 7920
attgagatca atagtgatga cattaaaaag cttagagata atgaagaacc caattcacct 7980
aagataagag tgtacaatac tgttatatca tacattgaga gcaatagaaa aaacaacaag 8040
caaaccatcc atctgctcaa gagactacca gcagacgtgc tgaagaagac aataaagaac 8100
acattagata tccacaaaag cataaccata agcaatccaa aagagtcaac tgtgaatgat 8160
caaaatgacc aaaccaaaaa taatgatatt accggataaa tatccttgta gtatatcatc 8220
catattgatc tcaagtgaaa gcatggttgc tacattcaat cataaaaaca tattacaatt 8280
taaccataac tatttggata accaccagcg tttattaaat catatatttg atgaaattca 8340
ttggacacct aaaaacttat tagatgccac tcaacaattt ctccaacatc ttaacatccc 8400
tgaagatata tatacagtat atatattagt gtcataatgc ttgaccataa cgactctatg 8460
tcatccaacc ataaaactat tttgataagg ttatgggaca aaatggatcc cattattaat 8520
ggaaactctg ctaatgtgta tctaactgat agttatttaa aaggtgttat ctctttttca 8580
gagtgtaatg ctttagggag ttatcttttt aacggccctt atcttaaaaa tgattacacc 8640
aacttaatta gtagacaaag cccactacta gagcatatga atcttaaaaa actaactata 8700
acacagtcat taatatctag atatcataaa ggtgaactga aattagaaga accaacttat 8760
ttccagtcat tacttatgac atataaaagt atgtcctcgt ctgaacaaat tgctacaact 8820
aacttactta aaaaaataat acgaagagcc atagaaataa gtgatgtaaa ggtgtacgcc 8880
atcttgaata aactaggatt aaaggaaaag gacagagtta agcccaacaa taattcaggt 8940
gatgaaaact cagtacttac aactataatt aaagatgata tactttcggc tgtggaaaac 9000
aatcaatcat atacaaattc agacaaaagt cactcagtaa atcaaaatat cactatcaaa 9060
acaacactct tgaaaaaatt gatgtgttca atgcaacatc ctccatcatg gttaatacac 9120
tggttcaatt tatatacaaa attaaataac atattaacac aatatcgatc aaatgaggta 9180
aaaagtcatg ggtttatatt aatagataat caaactttaa gtggttttca gtttatttta 9240
aatcaatatg gttgtatcgt ttatcataaa ggactcaaaa aaatcacaac tactacttac 9300
aatcaatttt tgacatggaa agacatcagc cttagcagat taaatgtttg cttaattact 9360
tggataagta attgtttaaa tacattaaac aaaagcttag ggctgagatg tggattcaat 9420
aatgttgtgt tatcacaatt atttctttat ggagattgta tactgaaatt atttcataat 9480
gaaggcttct acataataaa agaagtagag ggatttatta tgtctttaat tctaaacata 9540
acagaagaag atcaatttag gaaacgattt tataatagca tgctaaataa catcacagat 9600
gcagctatta aggctcaaaa ggacctacta tcaagagtat gtcacacttt attagacaag 9660
acagtgtctg ataatatcat aaatggtaaa tggataatcc tattaagtaa atttcttaaa 9720
ttgattaagc ttgcaggtga taataatctc aataacttga gtgagctata ttttctcttc 9780
agaatctttg gacatccaat ggtcgatgaa agacaagcaa tggattctgt aagaattaac 9840
tgtaatgaaa ctaagttcta cttattaagt agtctaagta cattaagagg tgctttcatt 9900
tatagaatca taaaagggtt tgtaaatacc tacaacagat ggcccacctt aaggaatgct 9960
attgtcctac ctctaagatg gttaaactac tataaactta atacttatcc atctctactt 10020
gaaatcacag aaaatgattt gattatttta tcaggattgc ggttctatcg tgagtttcat 10080
ctgcctaaaa aagtggatct tgaaatgata ataaatgaca aagccatttc acctccaaaa 10140
gatctaatat ggactagttt tcctagaaat tacatgccat cacatataca aaattatata 10200
gaacatgaaa agttgaagtt ctctgaaagc gacagatcga gaagagtact agagtattac 10260
ttgagagata ataaattcaa tgaatgcgat ctatacaatt gtgtagtcaa tcaaagctat 10320
ctcaacaact ctaatcacgt ggtatcacta actggtaaag aaagagagct cagtgtaggt 10380
agaatgtttg ctatgcaacc aggtatgttt aggcaaatcc aaatcttagc agagaaaatg 10440
atagctgaaa atattttaca attcttccct gagagtttga caagatatgg tgatctagag 10500
cttcaaaaga tattagaatt aaaagcagga ataagcaaca agtcaaatcg ttataatgat 10560
aactacaaca attatatcag taaatgttct atcattacag atcttagcaa attcaatcag 10620
gcatttagat atgaaacatc atgtatctgc agtgatgtat tagatgaact gcatggagta 10680
caatctctgt tctcttggtt gcatttaaca atacctcttg tcacaataat atgtacatat 10740
agacatgcac ctcctttcat aaaggatcat gttgttaatc ttaatgaggt tgatgaacaa 10800
agtggattat acagatatca tatgggtggt attgagggct ggtgtcaaaa actgtggacc 10860
attgaagcta tatcattatt agatctaata tctctcaaag ggaaattctc tatcacagct 10920
ctgataaatg gtgataatca gtcaattgat ataagcaaac cagttagact tatagagggt 10980
cagacccatg cacaagcaga ttatttgtta gcattaaata gccttaaatt gttatataaa 11040
gagtatgcag gtataggcca taagcttaag ggaacagaga cctatatatc ccgagatatg 11100
cagttcatga gcaaaacaat ccagcacaat ggagtgtact atccagccag tatcaaaaaa 11160
gtcctgagag taggtccatg gataaacacg atacttgatg attttaaagt tagtttagaa 11220
tctataggca gcttaacaca ggagttagaa tacagaggag aaagcttatt atgcagttta 11280
atatttagga acatttggtt atacaatcaa attgctttgc aactccgaaa tcatgcatta 11340
tgtaacaata agctatattt agatatattg aaagtattaa aacacttaaa aacttttttt 11400
aatcttgata gcattgatat ggctttatca ttgtatatga atttgcctat gctgtttggt 11460
ggtggtgatc ctaatttgtt atatcgaagc ttttatagga gaactccaga cttccttaca 11520
gaagctatag tacattcagt gtttgtgttg agctattata ctggtcacga tttacaagat 11580
aagctccagg atcttccaga tgatagactg aacaaattct tgacatgtgt catcacattt 11640
gataaaaatc ccaatgccga gtttgtaaca ttgatgaggg atccacaggc tttagggtct 11700
gaaaggcaag ctaaaattac tagtgagatt aatagattag cagtaacaga agtcttaagt 11760
atagccccaa acaaaatatt ttctaaaagt gcacaacatt atactaccac tgagattgat 11820
ctaaatgaca ttatgcaaaa tatagaacca acttaccctc atggattaag agttgtttat 11880
gaaagtttac ctttttataa agcagaaaaa atagttaatc ttatatcagg aacaaaatcc 11940
ataactaata tacttgaaaa aacatcagca atagatacaa ctgatattaa tagggctact 12000
gatatgatga ggaaaaatat aactttactt ataaggatac ttccactaga ttgtaacaaa 12060
gacaaaagag agttattaag tttagaaaat cttagtataa ctgaattaag caagtatgta 12120
agagaaagat cttggtcatt atccaatata gtaggagtaa catcgccaag tattatgttc 12180
acaatggaca ttaaatatac aactagcact atagccagtg gtataataat agaaaaatat 12240
aatgttaata gtttaactcg tggtgaaaga ggacccacca agccatgggt aggctcatcc 12300
acgcaggaga aaaaaacaat gccagtgtac aacagacaag ttttaaccaa aaagcaaaga 12360
gaccaaatag atttattagc aaaattagac tgggtatatg catccataga caacaaagat 12420
gaattcatgg aagaactgag tactggaaca cttggactgt catatgaaaa agccaaaaag 12480
ttgtttccac aatatctaag tgtcaattat ttacaccgtt taacagtcag tagtagacca 12540
tgtgaattcc ctgcatcaat accagcttat agaacaacaa attatcattt tgatactagt 12600
cctatcaatc atgtattaac agaaaagtat ggagatgaag atatcgacat tgtgtttcaa 12660
aattgcataa gttttggtct tagcctgatg tcggttgtgg aacaattcac aaacatatgt 12720
cctaatagaa ttattctcat accgaagctg aatgagatac atttgatgaa acctcctata 12780
tttacaggag atgttgatat catcaagttg aagcaagtga tacaaaagca gcacatgttc 12840
ctaccagata aaataagttt aacccaatat gtagaattat tcttaagtaa caaagcactt 12900
aaatctggat ctcacatcaa ctctaattta atattagtac ataaaatgtc tgattatttt 12960
cataatgctt atattttaag tactaattta gctggacatt ggattctgat tattcaactt 13020
atgaaagatt caaaaggtat ttttgaaaaa gattggggag aggggtacat aactgatcat 13080
atgttcatta atttgaatgt tttctttaat gcttataaga cttatttgct atgttttcat 13140
aaaggttatg gtaaagcaaa attagaatgt gatatgaaca cttcagatct tctttgtgtt 13200
ttggagttaa tagacagtag ctactggaaa tctatgtcta aagttttcct agaacaaaaa 13260
gtcataaaat acatagtcaa tcaagacaca agtttgcgta gaataaaagg ctgtcacagt 13320
tttaagttgt ggtttttaaa acgccttaat aatgctaaat ttaccgtatg cccttgggtt 13380
gttaacatag attatcaccc aacacacatg aaagctatat tatcttacat agatttagtt 13440
agaatggggt taataaatgt agataaatta accattaaaa ataaaaacaa attcaatgat 13500
gaattttaca catcaaatct cttttacatt agttataact tttcagacaa cactcatttg 13560
ctaacaaaac aaataagaat tgctaattca gaattagaag ataattataa caaactatat 13620
cacccaaccc cagaaacttt agaaaatatg tcattaattc ctgttaaaag taataatagt 13680
aacaaaccta aattttgtat aagtggaaat accgaatcta tgatgatgtc aacattctct 13740
agtaaaatgc atattaaatc ttccactgtt accacaagat tcaattatag caaacaagac 13800
ttgtacaatt tatttccaat tgttgtgata gacaagatta tagatcattc aggtaataca 13860
gcaaaatcta accaacttta caccaccact tcacatcaga catctttagt aaggaatagt 13920
gcatcacttt attgcatgct tccttggcat catgtcaata gatttaactt tgtatttagt 13980
tccacaggat gcaagatcag tatagagtat attttaaaag atcttaagat taaggacccc 14040
agttgtatag cattcatagg tgaaggagct ggtaacttat tattacgtac ggtagtagaa 14100
cttcatccag acataagata catttacaga agtttaaaag attgcaatga tcatagttta 14160
cctattgaat ttctaaggtt atacaacggg catataaaca tagattatgg tgagaattta 14220
accattcctg ctacagatgc aactaataac attcattggt cttatttaca tataaaattt 14280
gcagaaccta ttagcatctt tgtctgcgat gctgaattac ctgttacagc caattggagt 14340
aaaattataa ttgaatggag taagcatgta agaaagtgca agtactgttc ttctgtaaat 14400
agatgcattt taattgcaaa atatcatgct caagatgaca ttgatttcaa attagataac 14460
attactatat taaaaactta cgtgtgccta ggtagcaagt taaaaggatc tgaagtttac 14520
ttaatcctta caataggccc tgcaaatata cttcctgttt ttgatgttgt acaaaatgct 14580
aaattgatac tttcaagaac taaaaatttc attatgccta aaaaaactga caaggaatct 14640
atcgatgcag atattaaaag cttaatacct ttcctttgtt accctataac aaaaaaagga 14700
attaagactt cattgtcaaa attgaagagt gtagttaatg gagatatatt atcatattct 14760
atagctggac gtaatgaagt attcagcaac aagcttataa accacaagca tatgaatatc 14820
ctaaaatggc tagatcatgt tttaaatttt agatcagctg aacttaatta caatcattta 14880
tacatgatag agtccacata tccttactta agtgaattgt taaatagttt aacaaccaat 14940
gagctcaaga agctgattaa aataacaggt agtgtgctat acaaccttcc caacgaacag 15000
tagtttaaaa tatcattaac aagtttggtc aaatttagat gctaacacat cattatatta 15060
tagttattaa aaaatataca aacttttcaa taatttagca tattgattcc aaaattatca 15120
ttttagtctt aaggggttaa ataaaagtct aaaactaaca attatacatg tgcattcaca 15180
acacaacgag acattagttt ttgacacttt ttttctcgt 15219
〈210〉 8
<211> 2166
<212> PRT
〈213〉 respiratory syncytial virus
<400> 8
Met Asp Pro Ile Ile Asn Gly Asn Ser Ala Asn Val Tyr Leu Thr Asp
1 5 10 15
Ser Tyr Leu Lys Gly Val Ile Ser Phe Ser Glu Cys Asn Ala Leu Gly
20 25 30
Ser Tyr Leu Phe Asn Gly Pro Tyr Leu Lys Asn Asp Tyr Thr Asn Leu
35 40 45
Ile Ser Arg Gln Ser Pro Leu Leu Glu His Met Asn Leu Lys Lys Leu
50 55 60
Thr Ile Thr Gln Ser Leu Ile Ser Arg Tyr His Lys Gly Glu Leu Lys
65 70 75 80
Leu Glu Glu Pro Thr Tyr Phe Gln Ser Leu Leu Met Thr Tyr Lys Ser
85 90 95
Met Ser Ser Ser Glu Gln Ile Ala Thr Thr Asn Leu Leu Lys Lys Ile
100 105 110
Ile Arg Arg Ala Ile Glu Ile Ser Asp Val Lys Val Tyr Ala Ile Leu
115 120 125
Asn Lys Leu Gly Leu Lys Glu Lys Asp Arg Val Lys Pro Asn Asn Asn
130 135 140
Ser Gly Asp Glu Asn Ser Val Leu Thr Thr Ile Lys Asp Asp Ile
145 150 155 160
Leu Ser Ala Val Glu Asn Asn Gln Ser Tyr Thr Asn Ser Asp Lys Ser
165 170 175
His Ser Val Asn Gln Asn Ile Thr Ile Lys Thr Thr Leu Leu Lys Lys
180 185 190
Leu Met Cys Ser Met Gln His Pro Pro Ser Trp Leu Ile His Trp Phe
195 200 205
Asn Leu Tyr Thr Lys Leu Asn Asn Ile Leu Thr Gln Tyr Arg Ser Asn
210 215 220
Glu Val Lys Ser His Gly Phe Ile Leu Ile Asp Asn Gln Thr Leu Ser
225 230 235 240
Gly Phe Gln Phe Ile Leu Asn Gln Tyr Gly Cys Ile Val Tyr His Lys
245 250 255
Gly Leu Lys Lys Ile Thr Thr Thr Thr Tyr Asn Gln Phe Leu Thr Trp
260 265 270
Lys Asp Ile Ser Leu Ser Arg Leu Asn Val Cys Leu Ile Thr Trp Ile
275 280 285
Ser Asn Cys Leu Asn Thr Leu Asn Lys Ser Leu Gly Leu Arg Cys Gly
290 295 300
Phe Asn Asn Val Val Leu Ser Gln Leu Phe Leu Tyr Gly Asp Cys Ile
305 310 315 320
Leu Lys Leu Phe His Asn Glu Gly Phe Tyr Ile Ile Lys Glu Val Glu
325 330 335
Gly Phe Ile Met Ser Leu Ile Leu Asn Ile Thr Glu Glu Asp Gln Phe
340 345 350
Arg Lys Arg Phe Tyr Asn Ser Met Leu Asn Asn Ile Thr Asp Ala Ala
355 360 365
Ile Lys Ala Gln Lys Asp Leu Leu Ser Arg Val Cys His Thr Leu Leu
370 375 380
Asp Lys Thr Val Ser Asp Asn Ile Ile Asn Gly Lys Trp Ile Ile Leu
385 390 395 400
Leu Ser Lys Phe Leu Lys Leu Ile Lys Leu Ala Gly Asp Asn Asn Leu
405 410 415
Asn Asn Leu Ser Glu Leu Tyr Phe Leu Phe Arg Ile Phe Gly His Pro
420 425 430
Met Val Asp Glu Arg Gln Ala Met Asp Ser Val Arg Ile Asn Cys Asn
435 440 445
Glu Thr Lys Phe Tyr Leu Leu Ser Ser Leu Ser Thr Leu Arg Gly Ala
450 455 460
Phe Ile Tyr Arg Ile Ile Lys Gly Phe Val Asn Thr Tyr Asn Arg Trp
465 470 475 480
Pro Thr Leu Arg Asn Ala Ile Val Leu Pro Leu Arg Trp Leu Asn Tyr
485 490 495
Tyr Lys Leu Asn Thr Tyr Pro Ser Leu Leu Glu Ile Thr Glu Asn Asp
500 505 510
Leu Ile Ile Leu Ser Gly Leu Arg Phe Tyr Arg Glu Phe His Leu Pro
515 520 525
Lys Lys Val Asp Leu Glu Met Ile Ile Asn Asp Lys Ala Ile Ser Pro
530 535 540
Pro Lys Asp Leu Ile Trp Thr Ser Phe Pro Arg Asn Tyr Met Pro Ser
545 550 555 560
His Ile Gln Asn Tyr Ile Glu His Glu Lys Leu Lys Phe Ser Glu Ser
565 570 575
Asp Arg Ser Arg Arg Val Leu Glu Tyr Tyr Leu Arg Asp Asn Lys Phe
580 585 590
Asn Glu Cys Asp Leu Tyr Asn Cys Val Val Asn Gln Ser Tyr Leu Asn
595 600 605
Asn Ser Asn His Val Val Ser Leu Thr Gly Lys Glu Arg Glu Leu Ser
610 615 620
Val Gly Arg Met Phe Ala Met Gln Pro Gly Met Phe Arg Gln Ile Gln
625 630 635 640
Ile Leu Ala Glu Lys Met Ile Ala Glu Asn Ile Leu Gln Phe Phe Pro
645 650 655
Glu Ser Leu Thr Arg Tyr Gly Asp Leu Glu Leu Gln Lys Ile Leu Glu
660 665 670
Leu Lys Ala Gly Ile Ser Asn Lys Ser Asn Arg Tyr Asn Asp Asn Tyr
675 680 685
Asn Asn Tyr Ile Ser Lys Cys Ser Ile Ile Thr Asp Leu Ser Lys Phe
690 695 700
Asn Gln Ala Phe Arg Tyr Glu Thr Ser Cys Ile Cys Ser Asp Val Leu
705 710 715 720
Asp Glu Leu His Gly Val Gln Ser Leu Phe Ser Trp Leu His Leu Thr
725 730 735
Ile Pro Leu Val Thr Ile Ile Cys Thr Tyr Arg His Ala Pro Pro Phe
740 745 750
Ile Lys Asp His Val Val Asn Leu Asn Glu Val Asp Glu Gln Ser Gly
755 760 765
Leu Tyr Arg Tyr His Met Gly Gly Ile Glu Gly Trp Cys Gln Lys Leu
770 775 780
Trp Thr Ile Glu Ala Ile Ser Leu Leu Asp Leu Ile Ser Leu Lys Gly
785 790 795 800
Lys Phe Ser Ile Thr Ala Leu Ile Asn Gly Asp Asn Gln Ser Ile Asp
805 810 815
Ile Ser Lys Pro Val Arg Leu Ile Glu Gly Gln Thr His Ala Gln Ala
820 825 830
Asp Tyr Leu Leu Ala Leu Asn Ser Leu Lys Leu Leu Tyr Lys Glu Tyr
835 840 845
Ala Gly Ile Gly His Lys Leu Lys Gly Thr Glu Thr Tyr Ile Ser Arg
850 855 860
Asp Met Gln Phe Met Ser Lys Thr Ile Gln His Asn Gly Val Tyr Tyr
865 870 875 880
Pro Ala Ser Ile Lys Lys Val Leu Arg Val Gly Pro Trp Ile Asn Thr
885 890 895
Ile Leu Asp Asp Phe Lys Val Ser Leu Glu Ser Ile Gly Ser Leu Thr
900 905 910
Gln Glu Leu Glu Tyr Arg Gly Glu Ser Leu Leu Cys Ser Leu Ile Phe
915 920 925
Arg Asn Ile Trp Leu Tyr Asn Gln Ile Ala Leu Gln Leu Arg Asn His
930 935 940
Ala Leu Cys Asn Asn Lys Leu Tyr Leu Asp Ile Leu Lys Val Leu Lys
945 950 955 960
His Leu Lys Thr Phe Phe Asn Leu Asp Ser Ile Asp Met Ala Leu Ser
965 970 975
Leu Tyr Met Asn Leu Pro Met Leu Phe Gly Gly Gly Asp Pro Asn Leu
980 985 990
Leu Tyr Arg Ser Phe Tyr Arg Arg Thr Pro Asp Phe Leu Thr Glu Ala
995 1000 1005
Ile Val His Ser Val Phe Val Leu Ser Tyr Tyr Thr Gly His Asp Leu
1010 1015 1020
Gln Asp Lys Leu Gln Asp Leu Pro Asp Asp Arg Leu Asn Lys Phe Leu
1025 1030 1035 1040
Thr Cys Val Ile Thr Phe Asp Lys Asn Pro Asn Ala Glu Phe Val Thr
1045 1050 1055
Leu Met Arg Asp Pro Gln Ala Leu Gly Ser Glu Arg Gln Ala Lys Ile
1060 1065 1070
Thr Ser Glu Ile Asn Arg Leu Ala Val Thr Glu Val Leu Ser Ile Ala
1075 1080 1085
Pro Asn Lys Ile Phe Ser Lys Ser Ala Gln His Tyr Thr Thr Thr Glu
1090 1095 1100
Ile Asp Leu Asn Asp Ile Met Gln Asn Ile Glu Pro Thr Tyr Pro His
1105 1110 1115 1120
Gly Leu Arg Val Val Tyr Glu Ser Leu Pro Phe Tyr Lys Ala Glu Lys
1125 1130 1135
Ile Val Asn Leu Ile Ser Gly Thr Lys Ser Ile Thr Asn Ile Leu Glu
1140 1145 1150
Lys Thr Ser Ala Ile Asp Thr Thr Asp Ile Asn Arg Ala Thr Asp Met
1155 1160 1165
Met Arg Lys Asn Ile Thr Leu Leu Ile Arg Ile Leu Pro Leu Asp Cys
1170 1175 1180
Asn Lys Asp Lys Arg Glu Leu Leu Ser Leu Glu Asn Leu Ser Ile Thr
1185 1190 1195 1200
Glu Leu Ser Lys Tyr Val Arg Glu Arg Ser Trp Ser Leu Ser Asn Ile
1205 1210 1215
Val Gly Val Thr Ser Pro Ser Ile Met Phe Thr Met Asp Ile Lys Tyr
1220 1225 1230
Thr Thr Ser Thr Ile Ala Ser Gly Ile Ile Ile Glu Lys Tyr Asn Val
1235 1240 1245
Asn Ser Leu Thr Arg Gly Glu Arg Gly Pro Thr Lys Pro Trp Val Gly
1250 1255 1260
Ser Ser Thr Gln Glu Lys Lys Thr Met Pro Val Tyr Asn Arg Gln Val
1265 1270 1275 1280
Leu Thr Lys Lys Gln Arg Asp Gln Ile Asp Leu Leu Ala Lys Leu Asp
1285 1290 1295
Trp Val Tyr Ala Ser Ile Asp Asn Lys Asp Glu Phe Met Glu Glu Leu
1300 1305 1310
Ser Thr Gly Thr Leu Gly Leu Ser Tyr Glu Lys Ala Lys Lys Leu Phe
1315 1320 1325
Pro Gln Tyr Leu Ser Val Asn Tyr Leu His Arg Leu Thr Val Ser Ser
1330 1335 1340
Arg Pro Cys Glu Phe Pro Ala Ser Ile Pro Ala Tyr Arg Thr Thr Asn
1345 1350 1355 1360
Tyr His Phe Asp Thr Ser Pro Ile Asn His Val Leu Thr Glu Lys Tyr
1365 1370 1375
Gly Asp Glu Asp Ile Asp Ile Val Phe Gln Asn Cys Ile Ser Phe Gly
1380 1385 1390
Leu Ser Leu Met Ser Val Val Glu Gln Phe Thr Asn Ile Cys Pro Asn
1395 1400 1405
Arg Ile Ile Leu Ile Pro Lys Leu Asn Glu Ile His Leu Met Lys Pro
1410 1415 1420
Pro Ile Phe Thr Gly Asp Val Asp Ile Ile Lys Leu Lys Gln Val Ile
1425 1430 1435 1440
Gln Lys Gln His Met Phe Leu Pro Asp Lys Ile Ser Leu Thr Gln Tyr
1445 1450 1455
Val Glu Leu Phe Leu Ser Asn Lys Ala Leu Lys Ser Gly Ser His Ile
1460 1465 1470
Asn Ser Asn Leu Ile Leu Val His Lys Met Ser Asp Tyr Phe His Asn
1475 1480 1485
Ala Tyr Ile Leu Ser Thr Asn Leu Ala Gly His Trp Ile Leu Ile Ile
1490 1495 1500
Gln Leu Met Lys Asp Ser Lys Gly Ile Phe Glu Lys Asp Trp Gly Glu
1505 1510 1515 1520
Gly Tyr Ile Thr Asp His Met Phe Ile Asn Leu Asn Val Phe Phe Asn
1525 1530 1535
Ala Tyr Lys Thr Tyr Leu Leu Cys Phe His Lys Gly Tyr Gly Lys Ala
1540 1545 1550
Lys Leu Glu Cys Asp Met Asn Thr Ser Asp Leu Leu Cys Val Leu Glu
1555 1560 1565
Leu Ile Asp Ser Ser Tyr Trp Lys Ser Met Ser Lys Val Phe Leu Glu
1570 1575 1580
Gln Lys Val Ile Lys Tyr Ile Val Asn Gln Asp Thr Ser Leu Arg Arg
1585 1590 1595 1600
Ile Lys Gly Cys His Ser Phe Lys Leu Trp Phe Leu Lys Arg Leu Asn
1605 1610 1615
Asn Ala Lys Phe Thr Val Cys Pro Trp Val Val Asn Ile Asp Tyr His
1620 1625 1630
Pro Thr His Met Lys Ala Ile Leu Ser Tyr Ile Asp Leu Val Arg Met
1635 1640 1645
Gly Leu Ile Asn Val Asp Lys Leu Thr Ile Lys Asn Lys Asn Lys Phe
1650 1655 1660
Asn Asp Glu Phe Tyr Thr Ser Asn Leu Phe Tyr Ile Ser Tyr Asn Phe
1665 1670 1675 1680
Ser Asp Asn Thr His Leu Leu Thr Lys Gln Ile Arg Ile Ala Asn Ser
1685 1690 1695
Glu Leu Glu Asp Asn Tyr Asn Lys Leu Tyr His Pro Thr Pro Glu Thr
1700 1705 1710
Leu Glu Asn Met Ser Leu Ile Pro Val Lys Ser Asn Asn Ser Asn Lys
1715 1720 1725
Pro Lys Phe Cys Ile Ser Gly Asn Thr Glu Ser Met Met Met Ser Thr
1730 1735 1740
Phe Ser Ser Lys Met His Ile Lys Ser Ser Thr Val Thr Thr Arg Phe
1745 1750 1755 1760
Asn Tyr Ser Lys Gln Asp Leu Tyr Asn Leu Phe Pro Ile Val Val Ile
1765 1770 1775
Asp Lys Ile Ile Asp His Ser Gly Asn Thr Ala Lys Ser Asn Gln Leu
1780 1785 1790
Tyr Thr Thr Thr Ser His Gln Thr Ser Leu Val Arg Asn Ser Ala Ser
1795 1800 1805
Leu Tyr Cys Met Leu Pro Trp His His Val Asn Arg Phe Asn Phe Val
1810 1815 1820
Phe Ser Ser Thr Gly Cys Lys Ile Ser Ile Glu Tyr Ile Leu Lys Asp
1825 1830 1835 1840
Leu Lys Ile Lys Asp Pro Ser Cys Ile Ala Phe Ile Gly Glu Gly Ala
1845 1850 1855
Gly Asn Leu Leu Leu Arg Thr Val Val Glu Leu His Pro Asp Ile Arg
1860 1865 1870
Tyr Ile Tyr Arg Ser Leu Lys Asp Cys Asn Asp His Ser Leu Pro Ile
1875 1880 1885
Glu Phe Leu Arg Leu Tyr Asn Gly His Ile Asn Ile Asp Tyr Gly Glu
1890 1895 1900
Asn Leu Thr Ile Pro Ala Thr Asp Ala Thr Asn Asn Ile His Trp Ser
1905 1910 1915 1920
Tyr Leu His Ile Lys Phe Ala Glu Pro Ile Ser Ile Phe Val Cys Asp
1925 1930 1935
Ala Glu Leu Pro Val Thr Ala Asn Trp Ser Lys Ile Ile Glu Trp
1940 1945 1950
Ser Lys His Val Arg Lys Cys Lys Tyr Cys Ser Ser Val Asn Arg Cys
1955 1960 1965
Ile Leu Ile Ala Lys Tyr His Ala Gln Asp Asp Ile Asp Phe Lys Leu
1970 1975 1980
Asp Asn Ile Thr Ile Leu Lys Thr Tyr Val Cys Leu Gly Ser Lys Leu
1985 1990 1995 2000
Lys Gly Ser Glu Val Tyr Leu Ile Leu Thr Ile Gly Pro Ala Asn Ile
2005 2010 2015
Leu Pro Val Phe Asp Val Val Gln Asn Ala Lys Leu Ile Leu Ser Arg
2020 2025 2030
Thr Lys Asn Phe Ile Met Pro Lys Lys Thr Asp Lys Glu Ser Ile Asp
2035 2040 2045
Ala Asp Ile Lys Ser Leu Ile Pro Phe Leu Cys Tyr Pro Ile Thr Lys
2050 2055 2060
Lys Gly Ile Lys Thr Ser Leu Ser Lys Leu Lys Ser Val Val Asn Gly
2065 2070 2075 2080
Asp Ile Leu Ser Tyr Ser Ile Ala Gly Arg Asn Glu Val Phe Ser Asn
2085 2090 2095
Lys Leu Ile Asn His Lys His Met Asn Ile Leu Lys Trp Leu Asp His
2100 2105 2110
Val Leu Asn Phe Arg Ser Ala Glu Leu Asn Tyr Asn His Leu Tyr Met
2115 2120 2125
Ile Glu Ser Thr Tyr Pro Tyr Leu Ser Glu Leu Leu Asn Ser Leu Thr
2130 2135 2140
Thr Asn Glu Leu Lys Lys Leu Ile Lys Ile Thr Gly Ser Val Leu Tyr
2145 2150 2155 2160
Asn Leu Pro Asn Glu Gln
2165
〈210〉 9
<211> 15219
<212> DNA
〈213〉 respiratory syncytial virus
〈400〉 9
acgggaaaaa aatgcgtact acaaacttgc acattcgaaa aaaatggggc aaataagaac 60
ttgataagtg ctatttaagt ctaacctttt caatcagaaa tggggtgcaa ttcactgagc 120
atgataaagg ttagattaca aaatttattt gacaatgacg aagtagcatt gttaaaaata 180
acatgttata ctgataaatt aattcttctg accaatgcat tagccaaagc agcaatacat 240
acaattaaat taaacggcat agtttttata catgttataa caagcagtga agtgtgccct 300
gataacaata ttgtagtgaa atctaacttt acaacaatgc caatactaca aaatggagga 360
tacatatggg aattgattga gttgacacac tgctctcaat taaacggttt aatggatgat 420
aattgtgaaa tcaaattttc taaaagacta agtgactcag taatgactaa ttatatgaat 480
caaatatctg acttacttgg gcttgatctc aattcatgaa ttatgtttag tctaattcaa 540
tagacatgtg tttattacca ttttagttaa tataaaaact catcaaaggg aaatggggca 600
aataaactca cctaatcaat caaaccatga gcactacaaa tgacaacact actatgcaaa 660
gattgatgat cacagacatg agacccctgt caatggattc aataataaca tctcttacca 720
aagaaatcat cacacacaaa ttcatatact tgataaacaa tgaatgtatt gtaagaaaac 780
ttgatgaaag acaagctaca tttacattct tagtcaatta tgagatgaag ctactgcaca 840
aagtagggag taccaaatac aaaaaataca ctgaatataa tacaaaatat ggcactttcc 900
ccatgcctat atttatcaat cacggcgggt ttctagaatg tattggcatt aagcctacaa 960
aacacactcc tataatatac aaatatgacc tcaacccgtg aattccaaca aaaaaaccaa 1020
cccaaccaaa ccaaactatt cctcaaacaa cagtgctcaa tagttaagaa ggagctaatc 1080
cattttagta attaaaaata aaagtaaagc caataacata aattggggca aatacaaaga 1140
tggctcttag caaagtcaag ttgaatgata cattaaataa ggatcagctg ctgtcatcca 1200
gcaaatacac tattcaacgt agtacaggag ataatattga cactcccaat tatgatgtgc 1260
aaaaacacct aaacaaacta tgtggtatgc tattaatcac tgaagatgca aatcataaat 1320
tcacaggatt aataggtatg ttatatgcta tgtccaggtt aggaagggaa gacactataa 1380
agatacttaa agatgctgga tatcatgtta aagctaatgg agtagatata acaacatatc 1440
gtcaagatat aaatggaaag gaaatgaaat tcgaagtatt aacattatca agcttgacat 1500
cagaaataca agtcaatatt gagatagaat ctagaaagtc ctacaaaaaa atgctaaaag 1560
agatgggaga agtggctcca gaatataggc atgattctcc agactgtggg atgataatac 1620
tgtgtatagc tgcacttgtg ataaccaaat tagcagcagg agacagatca ggtcttacag 1680
cagtaattag gagggcaaac aatgtcttaa aaaacgaaat aaaacgatac aagggcctca 1740
taccaaagga tatagctaac agtttttatg aagtgtttga aaaacaccct catcttatag 1800
atgttttcgt gcactttggc attgcacaat catccacaag agggggtagt agagttgaag 1860
gaatctttgc aggattgttt atgaatgcct atggttcagg gcaagtaatg ctaagatggg 1920
gagttttagc caaatctgta aaaaatatca tgctaggaca tgctagtgtc caggcagaaa 1980
tggagcaagt tgtggaagtc tatgagtatg cacagaagtt gggaggagaa gctggattct 2040
accatatatt gaacaatcca aaagcatcat tgctgtcatt aactcaattt cccaacttct 2100
caagtgtggt cctaggcaat gcagcaggtc taggcataat gggagagtat agaggtacac 2160
caagaaacca ggatctttat gatgcagcta aagcatatgc agagcaactc aaagaaaatg 2220
gagtaataaa ctacagtgta ttagacttaa cagcagaaga attggaagcc ataaagcatc 2280
aactcaaccc caaagaagat gatgtagagc tttaagttaa caaaaaatac ggggcaaata 2340
agtcaacatg gagaagtttg cacctgaatt tcatggagaa gatgcaaata acaaagctac 2400
caaattccta gaatcaataa agggcaagtt cgcatcatcc aaagatccta agaagaaaga 2460
tagcataata tctgttaact caatagatat agaagtaact aaagagagcc cgataacatc 2520
tggcaccaac atcatcaatc caacaagtga agccgacagt accccagaaa caaaagccaa 2580
ctacccaaga aaacccctag taagcttcaa agaagatctc accccaagtg acaacccttt 2640
ttctaagttg tacaaggaaa caatagaaac atttgataac aatgaagaag aatctagcta 2700
ctcatatgaa gagataaatg atcaaacaaa tgacaacatt acagcaagac tagatagaat 2760
tgatgaaaaa ttaagtgaaa tattaggaat gctccataca ttagtagttg caagtgcagg 2820
acccacttca gctcgcgatg gaataagaga tgctatggtt ggtctaagag aagagatgat 2880
agaaaaaata agagcggaag cattaatgac caatgatagg ttagaggcta tggcaagact 2940
taggaatgag gaaagcgaaa aaatggcaaa agacacctca gatgaagtgt ctcttaatcc 3000
aacttccaaa aaattgagtg acttgttgga agacaacgat agtgacaatg atctatcact 3060
tgatgatttt tgatcagcga tcaactcact cagcaatcaa caacatcaat aaaacagaca 3120
tcaatccatt gaatcaactg ccagaccgaa caaacaaacg tccatcagta gaaccaccaa 3180
ccaatcaatc aaccaattga tcaatcagca acccgacaaa attaacaata tagtaacaaa 3240
aaaagaacaa gatggggcaa atatggaaac atacgtgaac aagcttcacg aaggctccac 3300
atacacagca gctgttcagt acaatgttct agaaaaagat gatgatcctg catcactaac 3360
aatatgggtg cctatgttcc agtcatctgt gccagcagac ttgctcataa aagaacttgc 3420
aagcatcaat atactagtga agcagatctc tacgcccaaa ggaccttcac tacgagtcac 3480
gattaactca agaagtgctg tgctggctca aatgcctagt aatttcatca taagcgcaaa 3540
tgtatcatta gatgaaagaa gcaaattagc atatgatgta actacacctt gtgaaatcaa 3600
agcatgcagt ctaacatgct taaaagtaaa aagtatgtta actacagtca aagatcttac 3660
catgaagaca ttcaacccca ctcatgagat cattgctcta tgtgaatttg aaaatattat 3720
gacatcaaaa agagtaataa taccaaccta tctaagatca attagtgtca agaacaagga 3780
tctgaactca ctagaaaata tagcaaccac cgaattcaaa aatgctatca ccaatgcaaa 3840
aattattcct tatgcaggat tagtgttagt tatcacagtt actgacaata aaggagcatt 3900
caaatatatc aaaccacaga gtcaatttat agtagatctt ggtgcctacc tagaaaaaga 3960
gagcatatat tatgtgacta ctaattggaa gcatacagct acacgttttt caatcaaacc 4020
actagaggat taaacttaat tatcaacact gaatgacagg tccacatata tcctcaaact 4080
acacactata tccaaacatc ataaacatct acactacaca cttcatcaca caaaccaatc 4140
ccactcaaaa tccaaaatca ctaccagcca ctatccgcta gacctagagt gcgaataggc 4200
aaataaaacc aaaatatggg gtaaatagac attagttaga gttcaatcaa tcttaacaac 4260
catttatacc gccaattcaa cacatatact ataaatctta aaatgggaaa tacatccatc 4320
acaatagaac tcacaagcaa attttggccc tattttacac taatacatat gatcttaact 4380
ctaatctttt tactaattat aatcactatc atgattgcaa cactaaataa gctaagtgaa 4440
cacaaagcat tctgcaacaa aactcttgaa ctaggacaga tgtaccaaat caacacacag 4500
agttccacca ttatgctgtg tcaaaccata atcctgtata tacaaacaaa caaatccaat 4560
cctctcacag agtcacggtg tcgcaaaacc acgctaacca tcatggtagc atagagtagt 4620
tatttaaaaa ttaacataat gatgaattgt tagtatgaga tcaaaaacaa cattggggca 4680
aatgcaacca tgtccaaaca caagaatcaa cgcactgcca ggactctaga aaagacctgg 4740
gatactctta atcatctaat tgtaatatcc tcttgtttat acagattaaa tttaaaatct 4800
atagcacaaa tagcactatc agttttggca atgataatct caacctctct cataattgca 4860
gccataatat tcatcatctc tgccaatcac aaagttacac taacaacggt cacagttcaa 4920
acaataaaaa accacactga aaaaaacatc accacctacc ctactcaagt ctcaccagaa 4980
agggttagtt catccaagca acccacaacc acatcaccaa tccacacaag ttcagctaca 5040
acatcaccca atacaaaatc agaaacacac catacaacag cacaaaccaa aggcagaacc 5100
accacttcaa cacagaccaa caagccaagc acaaaaccac gtccaaaaaa tccaccaaaa 5160
aaagatgatt accattttga agtgttcaac ttcgttccct gcagtatatg tggcaacaat 5220
caactttgca aatccatctg caaaacaata ccaagcaaca aaccaaagaa gaaaccaacc 5280
atcaaaccca caaacaaacc aaccaccaaa accacaaaca aaagagaccc aaaaacacca 5340
gccaaaacga cgaaaaaaga aactaccacc aacccaacaa aaaaactaac cctcaagacc 5400
acagaaagag acaccagcac ctcacaatcc actgcactcg acacaaccac attaaaacac 5460
acagtccaac agcaatccct cctctcaacc acccccgaaa acacacccaa ctccacacaa 5520
acacccacag catccgagcc ctccacacca aactccaccc aaaaaaccca gccacatgct 5580
tagttattca aaaactacat cttagcagag aaccgtgatc tatcaagcaa gaacgaaatt 5640
aaacctgggg caaataacca tggagttgat gatccacaag tcaagtgcaa tcttcctaac 5700
tcttgctatt aatgcattgt acctcacctc aagtcagaac ataactgagg agttttacca 5760
atcgacatgt agtgcagtta gcagaggtta ttttagtgct ttaagaacag gttggtatac 5820
tagtgtcata acaatagaat taagtaatat aaaagaaacc aaatgcaatg gaactgacac 5880
taaagtaaaa cttatgaaac aagaattaga taagtataag aatgcagtaa cagaattaca 5940
gctacttatg caaaacacac cagctgtcaa caaccgggcc agaagagaag caccacagta 6000
tatgaactac acaatcaata ccactaaaaa cctaaatgta tcaataagca agaagaggaa 6060
acgaagattt ctaggcttct tgttaggtgt gggatctgca atagcaagtg gtatagctgt 6120
atcaaaagtt ctacaccttg aaggagaagt gaacaagatc aaaaatgctt tgttgtctac 6180
aaacaaagct gtagtcagtt tatcaaatgg ggtcagtgtt ttaaccagca aagtgttaga 6240
tctcaagaat tacataaata accaattatt acccatagta aatcaacaga gctgtcgcat 6300
ctccaacatt gaaacagtta tagaattcca gcagaagaac agcagattgt tggaaatcac 6360
cagagaattt agtgtcaatg caggtgtaac aacaccttta agcacttaca tgttgacaaa 6420
cagtgagtta ctatcattaa tcaatgatat gcctataaca aatgatcaga aaaaattaat 6480
gtcaagcaat gttcagatag taaggcaaca aagttattcc atcatgtcta taataaagga 6540
agaagtcctt gcatatgttg tacagctgcc tatctatggt gtaatagata caccttgctg 6600
gaaattgcac acatcgcctc tatgcactac caacatcaaa gaaggatcaa atatttgttt 6660
aacaaggact gatagaggat ggtattgtga taatgcagga tcagtatcct tctttccaca 6720
ggctgacact tgtaaagtac agtccaatcg agtattttgt gacactatga acagtttgac 6780
attaccaagt gaagtcagcc tttgtaacac tgacatattc aattccaagt atgactgcaa 6840
aattatgaca tcaaaaacag acataagcag ctcagtaatt acttctcttg gagctatagt 6900
gtcatgctat ggtaaaacta aatgcactgc atccaacaaa aatcgtggga ttataaagac 6960
attttctaat ggttgtgact atgtgtcaaa caaaggagta gatactgtgt cagtgggcaa 7020
cactttatac tatgtaaaca agctggaagg caagaacctt tatgtaaaag gggaacctat 7080
aataaattac tatgaccctc tagtgtttcc ttctgatgag tttgatgcat caatatctca 7140
agtcaatgaa aaaatcaatc aaagtttagc ttttattcgt agatctgatg aattactaca 7200
taatgtaaat actggcaaat ctactacaaa tattatgata actacaatta ttatagtaat 7260
cattgtagta ttgttatcat taatagctat tggtttactg ttgtattgta aagccaaaaa 7320
cacaccagtt acactaagca aagaccaact aagtggaatc aataatattg cattcagcaa 7380
atagacaaaa aaccacctga tcatgtttca acaacaatct gctgaccacc aatcccaaat 7440
caacttacaa caaatatttc aacatcacag tacaggctga atcatttcct cacatcatgc 7500
tacccacata actaagctag atccttaact tatagttaca taaaaacctc aagtatcaca 7560
atcaaccact aaatcaacac atcattcaca aaattaacag ctggggcaaa tatgtcgcga 7620
agaaatcctt gtaaatttga gattagaggt cattgcttga atggtagaag atgtcactac 7680
agtcataatt actttgaatg gcctcctcat gcattactag tgaggcaaaa cttcatgtta 7740
aacaagatac tcaagtcaat ggacaaaagc atagacactt tgtctgaaat aagtggagct 7800
gctgaactgg atagaacaga agaatatgct cttggtatag ttggagtgct agagagttac 7860
ataggatcta taaacaacat aacaaaacaa tcagcatgtg ttgctatgag taaacttctt 7920
attgagatca atagtgatga cattaaaaag cttagagata atgaagaacc caattcacct 7980
aagataagag tgtacaatac tgttatatca tacattgaga gcaatagaaa aaacaacaag 8040
caaaccatcc atctgctcaa gagactacca gcagacgtgc tgaagaagac aataaagaac 8100
acattagata tccacaaaag cataaccata agcaatccaa aagagtcaac tgtgaatgat 8160
caaaatgacc aaaccaaaaa taatgatatt accggataaa tatccttgta gtatatcatc 8220
catattgatc tcaagtgaaa gcatggttgc tacattcaat cataaaaaca tattacaatt 8280
taaccataac tatttggata accaccagcg tttattaaat catatatttg atgaaattca 8340
ttggacacct aaaaacttat tagatgccac tcaacaattt ctccaacatc ttaacatccc 8400
tgaagatata tatacagtat atatattagt gtcataatgc ttgaccataa cgactctatg 8460
tcatccaacc ataaaactat tttgataagg ttatgggaca aaatggatcc cattattaat 8520
ggaaactctg ctaatgtgta tctaactgat agttatttaa aaggtgttat ctctttttca 8580
gagtgtaatg ctttagggag ttatcttttt aacggccctt atcttaaaaa tgattacacc 8640
aacttaatta gtagacaaag cccactacta gagcatatga atcttaaaaa actaactata 8700
acacagtcat taatatctag atatcataaa ggtgaactga aattagaaga accaacttat 8760
ttccagtcat tacttatgac atataaaagt atgtcctcgt ctgaacaaat tgctacaact 8820
aacttactta aaaaaataat acgaagagcc atagaaataa gtgatgtaaa ggtgtacgcc 8880
atcttgaata aactaggatt aaaggaaaag gacagagtta agcccaacaa taattcaggt 8940
gatgaaaact cagtacttac aaccataatt aaagatgata tactttcggc tgtggaaaac 9000
aatcaatcat atacaaattc agacaaaagt cactcagtaa atcaaaatat cactatcaaa 9060
acaacactct tgaaaaaatt gatgtgttca atgcaacatc ctccatcatg gttaatacac 9120
tggttcaatt tatatacaaa attaaataac atattaacac aatatcgatc aaatgaggta 9180
aaaagtcatg ggtttatatt aatagataat caaactttaa gtggttttca gtttatttta 9240
aatcaatatg gttgtatcgt ttatcataaa ggactcaaaa aaatcacaac tactacttac 9300
aatcaatttt tgacatggaa agacatcagc cttagcagat taaatgtttg cttaattact 9360
tggataagta attgtttaaa tacattaaac aaaagcttag ggctgagatg tggattcaat 9420
aatgttgtgt tatcacaatt atttctttat ggagattgta tactgaaatt atttcataat 9480
gaaggcttct acataataaa agaagtagag ggatttatta tgtctttaat tctaaacata 9540
acagaagaag atcaatttaa gaaacgattt tataatagca tgctaaataa catcacagat 9600
gcagctatta aggctcaaaa ggacctacta tcaagagtat gtcacacttt attagacaag 9660
acagtgtctg ataatatcat aaatggtaaa tggataatcc tattaagtaa atttcttaaa 9720
ttgattaagc ttgcaggtga taataatctc aataacttga gtgagctata ttttctcttc 9780
agaatctttg gacatccaat ggtcgatgaa agacaagcaa tggattctgt aagaattaac 9840
tgtaatgaaa ctaagttcta cttattaagt agtctaagta cattaagagg tgctttcatt 9900
tatagaatca taaaagggtt tgtaaatacc tacaacagat ggcccacctt aaggaatgct 9960
attgtcctac ctctaagatg gttaaactac tataaactta atacttatcc atctctactt 10020
gaaatcacag aaaatgattt gattatttta tcaggattgc ggttctatcg tgagtttcat 10080
ctgcctaaaa aagtggatct tgaaatgata ataaatgaca aagccatttc acctccaaaa 10140
gatctaatat ggactagttt tcctagaaat tacatgccat cacatataca aaattatata 10200
gaacatgaaa agttgaagtt ctctgaaagc gacagatcga gaagagtact agagtattac 10260
ttgagagata ataaattcaa tgaatgcgat ctatacaatt gtgtagtcaa tcaaagctat 10320
ctcaacaact ctaatcacgt ggtatcacta actggtaaag aaagagagct cagtgtaggt 10380
agaatgtttg ctatgcaacc aggtatgttt aggcaaatcc aaatcttagc agagaaaatg 10440
atagctgaaa atattttaca attcttccct gagagtttga caagatatgg tgatctagag 10500
cttcaaaaga tattagaatt aaaagcagga ataagcaaca agtcaaatcg ttataatgat 10560
aactacaaca attatatcag taaatgttct atcattacag atcttagcaa attcaatcag 10620
gcatttagat atgaaacatc atgtatctgc agtgatgtat tagatgaact gcatggagta 10680
caatctctgt tctcttggtt gcatttaaca atacctcttg tcacaataat atgtacatat 10740
agacatgcac ctcctttcat aaaggatcat gttgttaatc ttaatgaggt tgatgaacaa 10800
agtggattat acagatatca tatgggtggt attgagggct ggtgtcaaaa actgtggacc 10860
attgaagcta tatcattatt agatctaata tctctcaaag ggaaattctc tatcacagct 10920
ctgataaatg gtgataatca gtcaattgat ataagcaaac cagttagact tatagagggt 10980
cagacccatg cacaagcaga ttatttgtta gcattaaata gccttaaatt gttatataaa 11040
gagtatgcag gtataggcca taagcttaag ggaacagaga cctatatatc ccgagatatg 11100
cagttcatga gcaaaacaat ccagcacaat ggagtgtact atccagccag tatcaaaaaa 11160
gtcctgagag taggtccatg gataaacacg atacttgatg attttaaagt tagtttagaa 11220
tctataggca gcttaacaca ggagttagaa tacagaggag aaagcttatt atgcagttta 11280
atatttagga acatttggtt atacaatcaa attgctttgc aactccgaaa tcatgcatta 11340
tgtaacaata agctatattt agatatattg aaagtattaa aacacttaaa aacttttttt 11400
aatcttgata gcattgatat ggctttatca ttgtatatga atttgcctat gctgtttggt 11460
ggtggtgatc ctaatttgtt atatcgaagc ttttatagga gaactccaga cttccttaca 11520
gaagctatag tacattcagt gtttgtgttg agctattata ctggtcacga tttacaagat 11580
aagctccagg atcttccaga tgatagactg aacaaattct tgacatgtgt catcacattt 11640
gataaaaatc ccaatgccga gtttgtaaca ttgatgaggg atccacaggc tttagggtct 11700
gaaaggcaag ctaaaattac tagtgagatt aatagattag cagtaacaga agtcttaagt 11760
atagccccaa acaaaatatt ttctaaaagt gcacaacatt atactaccac tgagattgat 11820
ctaaatgaca ttatgcaaaa tatagaacca acttaccctc atggattaag agttgtttat 11880
gaaagtttac ctttttataa agcagaaaaa atagttaatc ttatatcagg aacaaaatcc 11940
ataactaata tacttgaaaa aacatcagca atagatacaa ctgatattaa tagggctact 12000
gatatgatga ggaaaaatat aactttactt ataaggatac ttccactaga ttgtaacaaa 12060
gacaaaagag agttattaag tttagaaaat cttagtataa ctgaattaag caagtatgta 12120
agagaaagat cttggtcatt atccaatata gtaggagtaa catcgccaag tattatgttc 12180
acaatgaaca ttaaatatac aactagcact atagccagtg gtataataat agaaaaatat 12240
aatgttaata gtttaactcg tggtgaaaga ggacccacca agccatgggt aggctcatcc 12300
acgcaggaga aaaaaacaat gccagtgtac aacagacaag ttttaaccaa aaagcaaaga 12360
gaccaaatag atttattagc aaaattagac tgggtatatg catccataga caacaaagat 12420
gaattcatgg aagaactgag tactggaaca cttggactgt catatgaaaa agccaaaaag 12480
ttgtttccac aatatctaag tgtcaattat ttacaccgtt taacagtcag tagtagacca 12540
tgtgaattcc ctgcatcaat accagcttat agaacaacaa attatcattt tgatactagt 12600
cctatcaatc atgtattaac agaaaagtat ggagatgaag atatcgacat tgtgtttcaa 12660
aattgcataa gttttggtct tagcctgatg tcggttgtgg aacaattcac aaacatatgt 12720
cctaatagaa ttattctcat accgaagctg aatgagatac atttgatgaa acctcctata 12780
tttacaggag atgttgatat catcaagttg aagcaagtga tacaaaagca gcacatgttc 12840
ctaccagata aaataagttt aacccaatat gtagaattat tcttaagtaa caaagcactt 12900
aaatctggat ctcacatcaa ctctaattta atattagtac ataaaatgtc tgattatttt 12960
cataatgctt atattttaag tactaattta gctggacatt ggattctgat tattcaactt 13020
atgaaagatt caaaaggtat ttttgaaaaa gattggggag aggggtacat aactgatcat 13080
atgttcatta atttgaatgt tttctttaat gcttataaga cttatttgct atgttttcat 13140
aaaggttatg gtaaagcaaa attagaatgt gatatgaaca cttcagatct tctttgtgtt 13200
ttggagttaa tagacagtag ctactggaaa tctatgtcta aagttttcct agaacaaaaa 13260
gtcataaaat acatagtcaa tcaagacaca agtttgcgta gaataaaagg ctgtcacagt 13320
tttaagttgt ggtttttaaa acgccttaat aatgctaaat ttaccgtatg cccttgggtt 13380
gttaacatag attatcaccc aacacacatg aaagctatat tatcttacat agatttagtt 13440
agaatggggt taataaatgt agataaatta accattaaaa ataaaaacaa attcaatgat 13500
gaattttaca catcaaatct cttttacatt agttataact tttcagacaa cactcatttg 13560
ctaacaaaac aaataagaat tgctaattca gaattagaag ataattataa caaactatat 13620
cacccaaccc cagaaacttt agaaaatatg tcattaattc ctgttaaaag taataatagt 13680
aacaaaccta aattttgtat aagtggaaat accgaatcta tgatgatgtc aacattctct 13740
agtaaaatgc atattaaatc ttccactgtt accacaagat tcaattatag caaacaagac 13800
ttgtacaatt tatttccaat tgttgtgata gacaagatta tagatcattc aggtaataca 13860
gcaaaatcta accaacttta caccaccact tcacatcaga catctttagt aaggaatagt 13920
gcatcacttt attgcatgct tccttggcat catgtcaata gatttaactt tgtatttagt 13980
tccacaggat gcaagatcag tatagagtat attttaaaag atcttaagat taaggacccc 14040
agttgtatag cattcatagg tgaaggagct ggtaacttat tattacgtac ggtagtagaa 14100
cttcatccag acataagata catttacaga agtttaaaag attgcaatga tcatagttta 14160
cctattgaat ttctaaggtt atacaacggg catataaaca tagattatgg tgagaattta 14220
accattcctg ctacagatgc aactaataac attcattggt cttatttaca tataaaattt 14280
gcagaaccta ttagcatctt tgtctgcgat gctgaattac ctgttacagc caattggagt 14340
aaaattataa ttgaatggag taagcatgta agaaagtgca agtactgttc ttctgtaaat 14400
agatgcattt taattgcaaa atatcatgct caagatgaca ttgatttcaa attagataac 14460
attactatat taaaaactta cgtgtgccta ggtagcaagt taaaaggatc tgaagtttac 14520
ttaatcctta caataggccc tgcaaatata cttcctgttt ttgatgttgt acaaaatgct 14580
aaattgatac tttcaagaac taaaaatttc attatgccta aaaaaactga caaggaatct 14640
atcgatgcaa atattaaaag cttaatacct ttcctttgtt accctataac aaaaaaagga 14700
attaagactt cattgtcaaa attgaagagt gtagttaatg gagatatatt atcatattct 14760
atagctggac gtaatgaagt attcagcaac aagcttataa accacaagca tatgaatatc 14820
ctaaaatggc tagatcatgt tttaaatttt agatcagctg aacttaatta caatcattta 14880
tacatgatag agtccacata tccttactta agtgaattgt taaatagttt aacaaccaat 14940
gagctcaaga agctgattaa aataacaggt agtgtgctat acaaccttcc caacgaacag 15000
tagtttaaaa tatcattaac aagtttggtc aaatttagat gctaacacat cattatatta 15060
tagttattaa agaatataca aacttttcaa taatttagca tattgattcc aaaattatca 15120
ttttagtctt aaggggttaa ataaaagtct aaaactaaca attatacatg tgcattcaca 15180
acacaacgag acattagttt ttgacacttt ttttctcgt 15219
<210> 10
<211> 2166
<212> PRT
〈213〉 respiratory syncytial virus
<400> 10
Met Asp Pro Ile Ile Asn Gly Asn Ser Ala Asn Val Tyr Leu Thr Asp
1 5 10 15
Ser Tyr Leu Lys Gly Val Ile Ser Phe Ser Glu Cys Asn Ala Leu Gly
20 25 30
Ser Tyr Leu Phe Asn Gly Pro Tyr Leu Lys Asn Asp Tyr Thr Asn Leu
35 40 45
Ile Ser Arg Gln Ser Pro Leu Leu Glu His Met Asn Leu Lys Lys Leu
50 55 60
Thr Ile Thr Gln Ser Leu Ile Ser Arg Tyr His Lys Gly Glu Leu Lys
65 70 75 80
Leu Glu Glu Pro Thr Tyr Phe Gln Ser Leu Leu Met Thr Tyr Lys Ser
85 90 95
Met Ser Ser Ser Glu Gln Ile Ala Thr Thr Asn Leu Leu Lys Lys Ile
100 105 110
Ile Arg Arg Ala Ile Glu Ile Ser Asp Val Lys Val Tyr Ala Ile Leu
115 120 125
Asn Lys Leu Gly Leu Lys Glu Lys Asp Arg Val Lys Pro Asn Asn Asn
130 135 140
Ser Gly Asp Glu Asn Ser Val Leu Thr Thr Ile Lys Asp Asp Ile
145 150 155 160
Leu Ser Ala Val Glu Asn Asn Gln Ser Tyr Thr Asn Ser Asp Lys Ser
165 170 175
His Ser Val Asn Gln Asn Ile Thr Ile Lys Thr Thr Leu Leu Lys Lys
180 185 190
Leu Met Cys Ser Met Gln His Pro Pro Ser Trp Leu Ile His Trp Phe
195 200 205
Asn Leu Tyr Thr Lys Leu Asn Asn Ile Leu Thr Gln Tyr Arg Ser Asn
210 215 220
Glu Val Lys Ser His Gly Phe Ile Leu Ile Asp Asn Gln Thr Leu Ser
225 230 235 240
Gly Phe Gln Phe Ile Leu Asn Gln Tyr Gly Cys Ile Val Tyr His Lys
245 250 255
Gly Leu Lys Lys Ile Thr Thr Thr Thr Tyr Asn Gln Phe Leu Thr Trp
260 265 270
Lys Asp Ile Ser Leu Ser Arg Leu Asn Val Cys Leu Ile Thr Trp Ile
275 280 285
Ser Asn Cys Leu Asn Thr Leu Asn Lys Ser Leu Gly Leu Arg Cys Gly
290 295 300
Phe Asn Asn Val Val Leu Ser Gln Leu Phe Leu Tyr Gly Asp Cys Ile
305 310 315 320
Leu Lys Leu Phe His Asn Glu Gly Phe Tyr Ile Ile Lys Glu Val Glu
325 330 335
Gly Phe Ile Met Ser Leu Ile Leu Asn Ile Thr Glu Glu Asp Gln Phe
340 345 350
Lys Lys Arg Phe Tyr Asn Ser Met Leu Asn Asn Ile Thr Asp Ala Ala
355 360 365
Ile Lys Ala Gln Lys Asp Leu Leu Ser Arg Val Cys His Thr Leu Leu
370 375 380
Asp Lys Thr Val Ser Asp Asn Ile Ile Asn Gly Lys Trp Ile Ile Leu
385 390 395 400
Leu Ser Lys Phe Leu Lys Leu Ile Lys Leu Ala Gly Asp Asn Asn Leu
405 410 415
Asn Asn Leu Ser Glu Leu Tyr Phe Leu Phe Arg Ile Phe Gly His Pro
420 425 430
Met Val Asp Glu Arg Gln Ala Met Asp Ser Val Arg Ile Asn Cys Asn
435 440 445
Glu Thr Lys Phe Tyr Leu Leu Ser Ser Leu Ser Thr Leu Arg Gly Ala
450 455 460
Phe Ile Tyr Arg Ile Ile Lys Gly Phe Val Asn Thr Tyr Asn Arg Trp
465 470 475 480
Pro Thr Leu Arg Asn Ala Ile Val Leu Pro Leu Arg Trp Leu Asn Tyr
485 490 495
Tyr Lys Leu Asn Thr Tyr Pro Ser Leu Leu Glu Ile Thr Glu Asn Asp
500 505 510
Leu Ile Ile Leu Ser Gly Leu Arg Phe Tyr Arg Glu Phe His Leu Pro
515 520 525
Lys Lys Val Asp Leu Glu Met Ile Ile Asn Asp Lys Ala Ile Ser Pro
530 535 540
Pro Lys Asp Leu Ile Trp Thr Ser Phe Pro Arg Asn Tyr Met Pro Ser
545 550 555 560
His Ile Gln Asn Tyr Ile Glu His Glu Lys Leu Lys Phe Ser Glu Ser
565 570 575
Asp Arg Ser Arg Arg Val Leu Glu Tyr Tyr Leu Arg Asp Asn Lys Phe
580 585 590
Asn Glu Cys Asp Leu Tyr Asn Cys Val Val Asn Gln Ser Tyr Leu Asn
595 600 605
Asn Ser Asn His Val Val Ser Leu Thr Gly Lys Glu Arg Glu Leu Ser
610 615 620
Val Gly Arg Met Phe Ala Met Gln Pro Gly Met Phe Arg Gln Ile Gln
625 630 635 640
Ile Leu Ala Glu Lys Met Ile Ala Glu Asn Ile Leu Gln Phe Phe Pro
645 650 655
Glu Ser Leu Thr Arg Tyr Gly Asp Leu Glu Leu Gln Lys Ile Leu Glu
660 665 670
Leu Lys Ala Gly Ile Ser Asn Lys Ser Asn Arg Tyr Asn Asp Asn Tyr
675 680 685
Asn Asn Tyr Ile Ser Lys Cys Ser Ile Ile Thr Asp Leu Ser Lys Phe
690 695 700
Asn Gln Ala Phe Arg Tyr Glu Thr Ser Cys Ile Cys Ser Asp Val Leu
705 710 715 720
Asp Glu Leu His Gly Val Gln Ser Leu Phe Ser Trp Leu His Leu Thr
725 730 735
Ile Pro Leu Val Thr Ile Ile Cys Thr Tyr Arg His Ala Pro Pro Phe
740 745 750
Ile Lys Asp His Val Val Asn Leu Asn Glu Val Asp Glu Gln Ser Gly
755 760 765
Leu Tyr Arg Tyr His Met Gly Gly Ile Glu Gly Trp Cys Gln Lys Leu
770 775 780
Trp Thr Ile Glu Ala Ile Ser Leu Leu Asp Leu Ile Ser Leu Lys Gly
785 790 795 800
Lys Phe Ser Ile Thr Ala Leu Ile Asn Gly Asp Asn Gln Ser Ile Asp
805 810 815
Ile Ser Lys Pro Val Arg Leu Ile Glu Gly Gln Thr His Ala Gln Ala
820 825 830
Asp Tyr Leu Leu Ala Leu Asn Ser Leu Lys Leu Leu Tyr Lys Glu Tyr
835 840 845
Ala Gly Ile Gly His Lys Leu Lys Gly Thr Glu Thr Tyr Ile Ser Arg
850 855 860
Asp Met Gln Phe Met Ser Lys Thr Ile Gln His Asn Gly Val Tyr Tyr
865 870 875 880
Pro Ala Ser Ile Lys Lys Val Leu Arg Val Gly Pro Trp Ile Asn Thr
885 890 895
Ile Leu Asp Asp Phe Lys Val Ser Leu Glu Ser Ile Gly Ser Leu Thr
900 905 910
Gln Glu Leu Glu Tyr Arg Gly Glu Ser Leu Leu Cys Ser Leu Ile Phe
915 920 925
Arg Asn Ile Trp Leu Tyr Asn Gln Ile Ala Leu Gln Leu Arg Asn His
930 935 940
Ala Leu Cys Asn Asn Lys Leu Tyr Leu Asp Ile Leu Lys Val Leu Lys
945 950 955 960
His Leu Lys Thr Phe Phe Asn Leu Asp Ser Ile Asp Met Ala Leu Ser
965 970 975
Leu Tyr Met Asn Leu Pro Met Leu Phe Gly Gly Gly Asp Pro Asn Leu
980 985 990
Leu Tyr Arg Ser Phe Tyr Arg Arg Thr Pro Asp Phe Leu Thr Glu Ala
995 1000 1005
Ile Val His Ser Val Phe Val Leu Ser Tyr Tyr Thr Gly His Asp Leu
1010 1015 1020
Gln Asp Lys Leu Gln Asp Leu Pro Asp Asp Arg Leu Asn Lys Phe Leu
1025 1030 1035 1040
Thr Cys Val Ile Thr Phe Asp Lys Asn Pro Asn Ala Glu Phe Val Thr
1045 1050 1055
Leu Met Arg Asp Pro Gln Ala Leu Gly Ser Glu Arg Gln Ala Lys Ile
1060 1065 1070
Thr Ser Glu Ile Asn Arg Leu Ala Val Thr Glu Val Leu Ser Ile Ala
1075 1080 1085
Pro Asn Lys Ile Phe Ser Lys Ser Ala Gln His Tyr Thr Thr Thr Glu
1090 1095 1100
Ile Asp Leu Asn Asp Ile Met Gln Asn Ile Glu Pro Thr Tyr Pro His
1105 1110 1115 1120
Gly Leu Arg Val Val Tyr Glu Ser Leu Pro Phe Tyr Lys Ala Glu Lys
1125 1130 1135
Ile Val Asn Leu Ile Ser Gly Thr Lys Ser Ile Thr Asn Ile Leu Glu
1140 1145 1150
Lys Thr Ser Ala Ile Asp Thr Thr Asp Ile Asn Arg Ala Thr Asp Met
1155 1160 1165
Met Arg Lys Asn Ile Thr Leu Leu Ile Arg Ile Leu Pro Leu Asp Cys
1170 1175 1180
Asn Lys Asp Lys Arg Glu Leu Leu Ser Leu Glu Asn Leu Ser Ile Thr
1185 1190 1195 1200
Glu Leu Ser Lys Tyr Val Arg Glu Arg Ser Trp Ser Leu Ser Asn Ile
1205 1210 1215
Val Gly Val Thr Ser Pro Ser Ile Met Phe Thr Met Asn Ile Lys Tyr
1220 1225 1230
Thr Thr Ser Thr Ile Ala Ser Gly Ile Ile Ile Glu Lys Tyr Asn Val
1235 1240 1245
Asn Ser Leu Thr Arg Gly Glu Arg Gly Pro Thr Lys Pro Trp Val Gly
1250 1255 1260
Ser Ser Thr Gln Glu Lys Lys Thr Met Pro Val Tyr Asn Arg Gln Val
1265 1270 1275 1280
Leu Thr Lys Lys Gln Arg Asp Gln Ile Asp Leu Leu Ala Lys Leu Asp
1285 1290 1295
Trp Val Tyr Ala Ser Ile Asp Asn Lys Asp Glu Phe Met Glu Glu Leu
1300 1305 1310
Ser Thr Gly Thr Leu Gly Leu Ser Tyr Glu Lys Ala Lys Lys Leu Phe
1315 1320 1325
Pro Gln Tyr Leu Ser Val Asn Tyr Leu His Arg Leu Thr Val Ser Ser
1330 1335 1340
Arg Pro Cys Glu Phe Pro Ala Ser Ile Pro Ala Tyr Arg Thr Thr Asn
1345 1350 1355 1360
Tyr His Phe Asp Thr Ser Pro Ile Asn His Val Leu Thr Glu Lys Tyr
1365 1370 1375
Gly Asp Glu Asp Ile Asp Ile Val Phe Gln Asn Cys Ile Ser Phe Gly
1380 1385 1390
Leu Ser Leu Met Ser Val Val Glu Gln Phe Thr Asn Ile Cys Pro Asn
1395 1400 1405
Arg Ile Ile Leu Ile Pro Lys Leu Asn Glu Ile His Leu Met Lys Pro
1410 1415 1420
Pro Ile Phe Thr Gly Asp Val Asp Ile Ile Lys Leu Lys Gln Val Ile
1425 1430 1435 1440
Gln Lys Gln His Met Phe Leu Pro Asp Lys Ile Ser Leu Thr Gln Tyr
1445 1450 1455
Val Glu Leu Phe Leu Ser Asn Lys Ala Leu Lys Ser Gly Ser His Ile
1460 1465 1470
Asn Ser Asn Leu Ile Leu Val His Lys Met Ser Asp Tyr Phe His Asn
1475 1480 1485
Ala Tyr Ile Leu Ser Thr Asn Leu Ala Gly His Trp Ile Leu Ile Ile
1490 1495 1500
Gln Leu Met Lys Asp Ser Lys Gly Ile Phe Glu Lys Asp Trp Gly Glu
1505 1510 1515 1520
Gly Tyr Ile Thr Asp His Met Phe Ile Asn Leu Asn Val Phe Phe Asn
1525 1530 1535
Ala Tyr Lys Thr Tyr Leu Leu Cys Phe His Lys Gly Tyr Gly Lys Ala
1540 1545 1550
Lys Leu Glu Cys Asp Met Asn Thr Ser Asp Leu Leu Cys Val Leu Glu
1555 1560 1565
Leu Ile Asp Ser Ser Tyr Trp Lys Ser Met Ser Lys Val Phe Leu Glu
1570 1575 1580
Gln Lys Val Ile Lys Tyr Ile Val Asn Gln Asp Thr Ser Leu Arg Arg
1585 1590 1595 1600
Ile Lys Gly Cys His Ser Phe Lys Leu Trp Phe Leu Lys Arg Leu Asn
1605 1610 1615
Asn Ala Lys Phe Thr Val Cys Pro Trp Val Val Asn Ile Asp Tyr His
1620 1625 1630
Pro Thr His Met Lys Ala Ile Leu Ser Tyr Ile Asp Leu Val Arg Met
1635 1640 1645
Gly Leu Ile Asn Val Asp Lys Leu Thr Ile Lys Asn Lys Asn Lys Phe
1650 1655 1660
Asn Asp Glu Phe Tyr Thr Ser Asn Leu Phe Tyr Ile Ser Tyr Asn Phe
1665 1670 1675 1680
Ser Asp Asn Thr His Leu Leu Thr Lys Gln Ile Arg Ile Ala Asn Ser
1685 1690 1695
Glu Leu Glu Asp Asn Tyr Asn Lys Leu Tyr His Pro Thr Pro Glu Thr
1700 1705 1710
Leu Glu Asn Met Ser Leu Ile Pro Val Lys Ser Asn Asn Ser Asn Lys
1715 1720 1725
Pro Lys Phe Cys Ile Ser Gly Asn Thr Glu Ser Met Met Met Ser Thr
1730 1735 1740
Phe Ser Ser Lys Met His Ile Lys Ser Ser Thr Val Thr Thr Arg Phe
1745 1750 1755 1760
Asn Tyr Ser Lys Gln Asp Leu Tyr Asn Leu Phe Pro Ile Val Val Ile
1765 1770 1775
Asp Lys Ile Ile Asp His Ser Gly Asn Thr Ala Lys Ser Asn Gln Leu
1780 1785 1790
Tyr Thr Thr Thr Ser His Gln Thr Ser Leu Val Arg Asn Ser Ala Ser
1795 1800 1805
Leu Tyr Cys Met Leu Pro Trp His His Val Asn Arg Phe Asn Phe Val
1810 1815 1820
Phe Ser Ser Thr Gly Cys Lys Ile Ser Ile Glu Tyr Ile Leu Lys Asp
1825 1830 1835 1840
Leu Lys Ile Lys Asp Pro Ser Cys Ile Ala Phe Ile Gly Glu Gly Ala
1845 1850 1855
Gly Asn Leu Leu Leu Arg Thr Val Val Glu Leu His Pro Asp Ile Arg
1860 1865 1870
Tyr Ile Tyr Arg Ser Leu Lys Asp Cys Asn Asp His Ser Leu Pro Ile
1875 1880 1885
Glu Phe Leu Arg Leu Tyr Asn Gly His Ile Asn Ile Asp Tyr Gly Glu
1890 1895 1900
Asn Leu Thr Ile Pro Ala Thr Asp Ala Thr Asn Asn Ile His Trp Ser
1905 1910 1915 1920
Tyr Leu His Ile Lys Phe Ala Glu Pro Ile Ser Ile Phe Val Cys Asp
1925 1930 1935
Ala Glu Leu Pro Val Thr Ala Asn Trp Ser Lys Ile Ile Glu Trp
1940 1945 1950
Ser Lys His Val Arg Lys Cys Lys Tyr Cys Ser Ser Val Asn Arg Cys
1955 1960 1965
Ile Leu Ile Ala Lys Tyr His Ala Gln Asp Asp Ile Asp Phe Lys Leu
1970 1975 1980
Asp Asn Ile Thr Ile Leu Lys Thr Tyr Val Cys Leu Gly Ser Lys Leu
1985 1990 1995 2000
Lys Gly Ser Glu Val Tyr Leu Ile Leu Thr Ile Gly Pro Ala Asn Ile
2005 2010 2015
Leu Pro Val Phe Asp Val Val Gln Asn Ala Lys Leu Ile Leu Ser Arg
2020 2025 2030
Thr Lys Asn Phe Ile Met Pro Lys Lys Thr Asp Lys Glu Ser Ile Asp
2035 2040 2045
Ala Asn Ile Lys Ser Leu Ile Pro Phe Leu Cys Tyr Pro Ile Thr Lys
2050 2055 2060
Lys Gly Ile Lys Thr Ser Leu Ser Lys Leu Lys Ser Val Val Asn Gly
2065 2070 2075 2080
Asp Ile Leu Ser Tyr Ser Ile Ala Gly Arg Asn Glu Val Phe Ser Asn
2085 2090 2095
Lys Leu Ile Asn His Lys His Met Asn Ile Leu Lys Trp Leu Asp His
2100 2105 2110
Val Leu Asn Phe Arg Ser Ala Glu Leu Asn Tyr Asn His Leu Tyr Met
2115 2120 2125
Ile Glu Ser Thr Tyr Pro Tyr Leu Ser Glu Leu Leu Asn Ser Leu Thr
2130 2135 2140
Thr Asn Glu Leu Lys Lys Leu Ile Lys Ile Thr Gly Ser Val Leu Tyr
2145 2150 2155 2160
Asn Leu Pro Asn Glu Gln
2165
<210> 11
<211> 15219
<212> DNA
〈213〉 respiratory syncytial virus
<400> 11
acgggaaaaa aatgcgtact acaaacttgc acattcgaaa aaaatggggc aaataagaac 60
ttgataagtg ctatttaagt ctaacctttt caatcagaaa tggggtgcaa ttcactgagc 120
atgataaagg ttagattaca aaatttattt gacaatgacg aagtagcatt gttaaaaata 180
acatgttata ctgataaatt aattcttctg accaatgcat tagccaaagc agcaatacat 240
acaattaaat taaacggcat agtttttata catgttataa caagcagtga agtgtgccct 300
gataacaata ttgtagtgaa atctaacttt acaacaatgc caatactaca aaatggagga 360
tacatatggg aattgattga gttgacacac tgctctcaat taaacggttt aatggatgat 420
aattgtgaaa tcaaattttc taaaagacta agtgactcag taatgactaa ttatatgaat 480
caaatatctg acttacttgg gcttgatctc aattcatgaa ttatgtttag tctaattcaa 540
tagacatgtg tttattacca ttttagttaa tataaaaact catcaaaggg aaatggggca 600
aataaactca cctaatcaat caaaccatga gcactacaaa tgacaacact actatgcaaa 660
gattgatgat cacagacatg agacccctgt caatggattc aataataaca tctcttacca 720
aagaaatcat cacacacaaa ttcatatact tgataaacaa tgaatgtatt gtaagaaaac 780
ttgatgaaag acaagctaca tttacattct tagtcaatta tgagatgaag ctactgcaca 840
aagtagggag taccaaatac aaaaaataca ctgaatataa tacaaaatat ggcactttcc 900
ccatgcctat atttatcaat cacggcgggt ttctagaatg tattggcatt aagcctacaa 960
aacacactcc tataatatac aaatatgacc tcaacccgtg aattccaaca aaaaaaccaa 1020
cccaaccaaa ccaaactatt cctcaaacaa cagtgctcaa tagttaagaa ggagctaatc 1080
cattttagta attaaaaata aaagtaaagc caataacata aattggggca aatacaaaga 1140
tggctcttag caaagtcaag ttgaatgata cattaaataa ggatcagctg ctgtcatcca 1200
gcaaatacac tattcaacgt agtacaggag ataatattga cactcccaat tatgatgtgc 1260
aaaaacacct aaacaaacta tgtggtatgc tattaatcac tgaagatgca aatcataaat 1320
tcacaggatt aataggtatg ttatatgcta tgtccaggtt aggaagggaa gacactataa 1380
agatacttaa agatgctgga tatcatgtta aagctaatgg agtagatata acaacatatc 1440
gtcaagatat aaatggaaag gaaatgaaat tcgaagtatt aacattatca agcttgacat 1500
cagaaataca agtcaatatt gagatagaat ctagaaagtc ctacaaaaaa atgctaaaag 1560
agatgggaga agtggctcca gaatataggc atgattctcc agactgtggg atgataatac 1620
tgtgtatagc tgcacttgtg ataaccaaat tagcagcagg agacagatca ggtcttacag 1680
cagtaattag gagggcaaac aatgtcttaa aaaacgaaat aaaacgatac aagggcctca 1740
taccaaagga tatagctaac agtttttatg aagtgtttga aaaacaccct catcttatag 1800
atgttttcgt gcactttggc attgcacaat catccacaag agggggtagt agagttgaag 1860
gaatctttgc aggattgttt atgaatgcct atggttcagg gcaagtaatg ctaagatggg 1920
gagttttagc caaatctgta aaaaatatca tgctaggaca tgctagtgtc caggcagaaa 1980
tggagcaagt tgtggaagtc tatgagtatg cacagaagtt gggaggagaa gctggattct 2040
accatatatt gaacaatcca aaagcatcat tgctgtcatt aactcaattt cccaacttct 2100
caagtgtggt cctaggcaat gcagcaggtc taggcataat gggagagtat agaggtacac 2160
caagaaacca ggatctttat gatgcagcta aagcatatgc agagcaactc aaagaaaatg 2220
gagtaataaa ctacagtgta ttagacttaa cagcagaaga attggaagcc ataaagcatc 2280
aactcaaccc caaagaagat gatgtagagc tttaagttaa caaaaaatac ggggcaaata 2340
agtcaacatg gagaagtttg cacctgaatt tcatggagaa gatgcaaata acaaagctac 2400
caaattccta gaatcaataa agggcaagtt cgcatcatcc aaagatccta agaagaaaga 2460
tagcataata tctgttaact caatagatat agaagtaact aaagagagcc cgataacatc 2520
tggcaccaac atcatcaatc caacaagtga agccgacagt accccagaaa caaaagccaa 2580
ctacccaaga aaacccctag taagcttcaa agaagatctc accccaagtg acaacccttt 2640
ttctaagttg tacaaggaaa caatagaaac atttgataac aatgaagaag aatctagcta 2700
ctcatatgaa gagataaatg atcaaacaaa tgacaacatt acagcaagac tagatagaat 2760
tgatgaaaaa ttaagtgaaa tattaggaat gctccataca ttagtagttg caagtgcagg 2820
acccacttca gctcgcgatg gaataagaga tgctatggtt ggtctaagag aagagatgat 2880
agaaaaaata agagcggaag cattaatgac caatgatagg ttagaggcta tggcaagact 2940
taggaatgag gaaagcgaaa aaatggcaaa agacacctca gatgaagtgt ctcttaatcc 3000
aacttccaaa aaattgagtg acttgttgga agacaacgat agtgacaatg atctatcact 3060
tgatgatttt tgatcagcga tcaactcact cagcaatcaa caacatcaat aaaacagaca 3120
tcaatccatt gaatcaactg ccagaccgaa caaacaaacg tccatcagta gaaccaccaa 3180
ccaatcaatc aaccaattga tcaatcagca acccgacaaa attaacaata tagtaacaaa 3240
aaaagaacaa gatggggcaa atatggaaac atacgtgaac aagcttcacg aaggctccac 3300
atacacagca gctgttcagt acaatgttct agaaaaagat gatgatcctg catcactaac 3360
aatatgggtg cctatgttcc agtcatctgt gccagcagac ttgctcataa aagaacttgc 3420
aagcatcaat atactagtga agcagatctc tacgcccaaa ggaccttcac tacgagtcac 3480
gattaactca agaagtgctg tgctggctca aatgcctagt aatttcatca taagcgcaaa 3540
tgtatcatta gatgaaagaa gcaaattagc atatgatgta actacacctt gtgaaatcaa 3600
agcatgcagt ctaacatgct taaaagtaaa aagtatgtta actacagtca aagatcttac 3660
catgaagaca ttcaacccca ctcatgagat cattgctcta tgtgaatttg aaaatattat 3720
gacatcaaaa agagtaataa taccaaccta tctaagatca attagtgtca agaacaagga 3780
tctgaactca ctagaaaata tagcaaccac cgaattcaaa aatgctatca ccaatgcaaa 3840
aattattcct tatgcaggat tagtgttagt tatcacagtt actgacaata aaggagcatt 3900
caaatatatc aaaccacaga gtcaatttat agtagatctt ggtgcctacc tagaaaaaga 3960
gagcatatat tatgtgacta ctaattggaa gcatacagct acacgttttt caatcaaacc 4020
actagaggat taaacttaat tatcaacact gaatgacagg tccacatata tcctcaaact 4080
acacactata tccaaacatc ataaacatct acactacaca cttcatcaca caaaccaatc 4140
ccactcaaaa tccaaaatca ctaccagcca ctatctgcta gacctagagt gcgaataggt 4200
aaataaaacc aaaatatggg gtaaatagac attagttaga gttcaatcaa tcttaacaac 4260
catttatacc gccaattcaa cacatatact ataaatctta aaatgggaaa tacatccatc 4320
acaatagaat tcacaagcaa attttggccc tattttacac taatacatat gatcttaact 4380
ctaatctttt tactaattat aatcactatt atgattgcaa tactaaataa gctaagtgaa 4440
cataaagcat tctgtaacaa aactcttgaa ctaggacaga tgtatcaaat caacacatag 4500
agttctacca ttatgctgtg tcaaattata atcctgtata tataaacaaa caaatccaat 4560
cttctcacag agtcatggtg tcgcaaaacc acgctaacta tcatggtagc atagagtagt 4620
tatttaaaaa ttaacataat gatgaattgt tagtatgaga tcaaaaacaa cattggggca 4680
aatgcaacca tgtccaaaca caagaatcaa cgcactgcca ggactctaga aaagacctgg 4740
gatactctta atcatctaat tgtaatatcc tcttgtttat acagattaaa tttaaaatct 4800
atagcacaaa tagcactatc agttttggca atgataatct caacctctct cataattgca 4860
gccataatat tcatcatctc tgccaatcac aaagttacac taacaacggt cacagttcaa 4920
acaataaaaa accacactga aaaaaacatc accacctacc ctactcaagt ctcaccagaa 4980
agggttagtt catccaagca acccacaacc acatcaccaa tccacacaag ttcagctaca 5040
acatcaccca atacaaaatc agaaacacac catacaacag cacaaaccaa aggcagaacc 5100
accacttcaa cacagaccaa caagccaagc acaaaaccac gtccaaaaaa tccaccaaaa 5160
aaagatgatt accattttga agtgttcaac ttcgttccct gcagtatatg tggcaacaat 5220
caactttgca aatccatctg caaaacaata ccaagcaaca aaccaaagaa gaaaccaacc 5280
atcaaaccca caaacaaacc aaccaccaaa accacaaaca aaagagaccc aaaaacacca 5340
gccaaaacga cgaaaaaaga aactaccacc aacccaacaa aaaaactaac cctcaagacc 5400
acagaaagag acaccagcac ctcacaatcc actgcactcg acacaaccac attaaaacac 5460
acagtccaac agcaatccct cctctcaacc acccccgaaa acacacccaa ctccacacaa 5520
acacccacag catccgagcc ctccacacca aactccaccc aaaaaaccca gccacatgct 5580
tagttattca aaaactacat cttagcagag aaccgtgatc tatcaagcaa gaacgaaatt 5640
aaacctgggg caaataacca tggagttgat gatccacaag tcaagtgcaa tcttcctaac 5700
tcttgctatt aatgcattgt acctcacctc aagtcagaac ataactgagg agttttacca 5760
atcgacatgt agtgcagtta gcagaggtta ttttagtgct ttaagaacag gttggtatac 5820
tagtgtcata acaatagaat taagtaatat aaaagaaacc aaatgcaatg gaactgacac 5880
taaagtaaaa cttatgaaac aagaattaga taagtataag aatgcagtaa cagaattaca 5940
gctacttatg caaaacacac cagctgtcaa caaccgggcc agaagagaag caccacagta 6000
tatgaactac acaatcaata ccactaaaaa cctaaatgta tcaataagca agaagaggaa 6060
acgaagattt ctaggcttct tgttaggtgt gggatctgca atagcaagtg gtatagctgt 6120
atcaaaagtt ctacaccttg aaggagaagt gaacaagatc aaaaatgctt tgttgtctac 6180
aaacaaagct gtagtcagtt tatcaaatgg ggtcagtgtt ttaaccagca aagtgttaga 6240
tctcaagaat tacataaata accaattatt acccatagta aatcaacaga gctgtcgcat 6300
ctccaacatt gaaacagtta tagaattcca gcagaagaac agcagattgt tggaaatcac 6360
cagagaattt agtgtcaatg caggtgtaac aacaccttta agcacttaca tgttgacaaa 6420
cagtgagtta ctatcattaa tcaatgatat gcctataaca aatgatcaga aaaaattaat 6480
gtcaagcaat gttcagatag taaggcaaca aagttattcc atcatgtcta taataaagga 6540
agaagtcctt gcatatgttg tacagctgcc tatctatggt gtaatagata caccttgctg 6600
gaaattgcac acatcgcctc tatgcactac caacatcaaa gaaggatcaa atatttgttt 6660
aacaaggact gatagaggat ggtattgtga taatgcagga tcagtatcct tctttccaca 6720
ggctgacact tgtaaagtac agtccaatcg agtattttgt gacactatga acagtttgac 6780
attaccaagt gaagtcagcc tttgtaacac tgacatattc aattccaagt atgactgcaa 6840
aattatgaca tcaaaaacag acataagcag ctcagtaatt acttctcttg gagctatagt 6900
gtcatgctat ggtaaaacta aatgcactgc atccaacaaa aatcgtggga ttataaagac 6960
attttctaat ggttgtgact atgtgtcaaa caaaggagta gatactgtgt cagtgggcaa 7020
cactttatac tatgtaaaca agctggaagg caagaacctt tatgtaaaag gggaacctat 7080
aataaattac tatgaccctc tagtgtttcc ttctgatgag tttgatgcat caatatctca 7140
agtcaatgaa aaaatcaatc aaagtttagc ttttattcgt agatctgatg aattactaca 7200
taatgtaaat actggcaaat ctactacaaa tattatgata actacaatta ttatagtaat 7260
cattgtagta ttgttatcat taatagctat tggtttactg ttgtattgta aagccaaaaa 7320
cacaccagtt acactaagca aagaccaact aagtggaatc aataatattg cattcagcaa 7380
atagacaaaa aaccacctga tcatgtttca acaacaatct gctgaccacc aatcccaaat 7440
caacttacaa caaatatttc aacatcacag tacaggctga atcatttcct cacatcatgc 7500
tacccacata actaagctag atccttaact tatagttaca taaaaacctc aagtatcaca 7560
atcaaccact aaatcaacac atcattcaca aaattaacag ctggggcaaa tatgtcgcga 7620
agaaatcctt gtaaatttga gattagaggt cattgcttga atggtagaag atgtcactac 7680
agtcataatt actttgaatg gcctcctcat gcattactag tgaggcaaaa cttcatgtta 7740
aacaagatac tcaagtcaat ggacaaaagc atagacactt tgtctgaaat aagtggagct 7800
gctgaactgg atagaacaga agaatatgct cttggtatag ttggagtgct agagagttac 7860
ataggatcta taaacaacat aacaaaacaa tcagcatgtg ttgctatgag taaacttctt 7920
attgagatca atagtgatga cattaaaaag cttagagata atgaagaacc caattcacct 7980
aagataagag tgtacaatac tgttatatca tacattgaga gcaatagaaa aaacaacaag 8040
caaaccatcc atctgctcaa gagactacca gcagacgtgc tgaagaagac aataaagaac 8100
acattagata tccacaaaag cataaccata agcaatccaa aagagtcaac tgtgaatgat 8160
caaaatgacc aaaccaaaaa taatgatatt accggataaa tatccttgta gtatatcatc 8220
catattgatc tcaagtgaaa gcatggttgc tacattcaat cataaaaaca tattacaatt 8280
taaccataac tatttggata accaccagcg tttattaaat catatatttg atgaaattca 8340
ttggacacct aaaaacttat tagatgccac tcaacaattt ctccaacatc ttaacatccc 8400
tgaagatata tatacagtat atatattagt gtcataatgc ttgaccataa cgactctatg 8460
tcatccaacc ataaaactat tttgataagg ttatgggaca aaatggatcc cattattaat 8520
ggaaactctg ctaatgtgta tctaactgat agttatttaa aaggtgttat ctctttttca 8580
gagtgtaatg ctttagggag ttatcttttt aacggccctt atcttaaaaa tgattacacc 8640
aacttaatta gtagacaaag cccactacta gagcatatga atcttaaaaa actaactata 8700
acacagtcat taatatctag atatcataaa ggtgaactga aattagaaga accaacttat 8760
ttccagtcat tacttatgac atataaaagt atgtcctcgt ctgaacaaat tgctacaact 8820
aacttactta aaaaaataat acgaagagcc atagaaataa gtgatgtaaa ggtgtacgcc 8880
atcttgaata aactaggatt aaaggaaaag gacagagtta agcccaacaa taattcaggt 8940
gatgaaaact cagtacttac aactataatt aaagatgata tactttcggc tgtggaaaac 9000
aatcaatcat atacaaattc agacaaaagt cactcagtaa atcaaaatat cactatcaaa 9060
acaacactct tgaaaaaatt gatgtgttca atgcaacatc ctccatcatg gttaatacac 9120
tggttcaatt tatatacaaa attaaataac atattaacac aatatcgatc aaatgaggta 9180
aaaagtcatg ggtttatatt aatagataat caaactttaa gtggttttca gtttatttta 9240
aatcaatatg gttgtatcgt ttatcataaa ggactcaaaa aaatcacaac tactacttac 9300
aatcaatttt tgacatggaa agacatcagc cttagcagat taaatgtttg cttaattact 9360
tggataagta attgtttaaa tacattaaac aaaagcttag ggctgagatg tggattcaat 9420
aatgttgtgt tatcacaatt atttctttat ggagattgta tactgaaatt atttcataat 9480
gaaggcttct acataataaa agaagtagag ggatttatta tgtctttaat tctaaacata 9540
acagaagaag atcaatttag gaaacgattt tataatagca tgctaaataa catcacagat 9600
gcagctatta aggctcaaaa ggacctacta tcaagagtat gtcacacttt attagacaag 9660
acagtgtctg ataatatcat aaatggtaaa tggataatcc tattaagtaa atttcttaaa 9720
ttgattaagc ttgcaggtga taataatctc aataacttga gtgagctata ttttctcttc 9780
agaatctttg gacatccaat ggtcgatgaa agacaagcaa tggattctgt aagaattaac 9840
tgtaatgaaa ctaagttcta cttattaagt agtctaagta cattaagagg tgctttcatt 9900
tatagaatca taaaagggtt tgtaaatacc tacaacagat ggcccacctt aaggaatgct 9960
attgtcctac ctctaagatg gttaaactac tataaactta atacttatcc atctctactt 10020
gaaatcacag aaaatgattt gattatttta tcaggattgc ggttctatcg tgagtttcat 10080
ctgcctaaaa aagtggatct tgaaatgata ataaatgaca aagccatttc acctccaaaa 10140
gatctaatat ggactagttt tcctagaaat tacatgccat cacatataca aaattatata 10200
gaacatgaaa agttgaagtt ctctgaaagc gacagatcga gaagagtact agagtattac 10260
ttgagagata ataaattcaa tgaatgcgat ctatacaatt gtgtagtcaa tcaaagctat 10320
ctcaacaact ctaatcacgt ggtatcacta actggtaaag aaagagagct cagtgtaggt 10380
agaatgtttg ctatgcaacc aggtatgttt aggcaaatcc aaatcttagc agagaaaatg 10440
atagctgaaa atattttaca attcttccct gagagtttga caagatatgg tgatctagag 10500
cttcaaaaga tattagaatt aaaagcagga ataagcaaca agtcaaatcg ttataatgat 10560
aactacaaca attatatcag taaatgttct atcattacag atcttagcaa attcaatcag 10620
gcatttagat atgaaacatc atgtatctgc agtgatgtat tagatgaact gcatggagta 10680
caatctctgt tctcttggtt gcatttaaca atacctcttg tcacaataat atgtacatat 10740
agacatgcac ctcctttcat aaaggatcat gttgttaatc ttaatgaggt tgatgaacaa 10800
agtggattat acagatatca tatgggtggt attgagggct ggtgtcaaaa actgtggacc 10860
attgaagcta tatcattatt agatctaata tctctcaaag ggaaattctc tatcacagct 10920
ctgataaatg gtgataatca gtcaattgat ataagcaaac cagttagact tatagagggt 10980
cagacccatg cacaagcaga ttatttgtta gcattaaata gccttaaatt gttatataaa 11040
gagtatgcag gtataggcca taagcttaag ggaacagaga cctatatatc ccgagatatg 11100
cagttcatga gcaaaacaat ccagcacaat ggagtgtact atccagccag tatcaaaaaa 11160
gtcctgagag taggtccatg gataaacacg atacttgatg attttaaagt tagtttagaa 11220
tctataggca gcttaacaca ggagttagaa tacagaggag aaagcttatt atgcagttta 11280
atatttagga acatttggtt atacaatcaa attgctttgc aactccgaaa tcatgcatta 11340
tgtaacaata agctatattt agatatattg aaagtattaa aacacttaaa aacttttttt 11400
aatcttgata gcattgatat ggctttatca ttgtatatga atttgcctat gctgtttggt 11460
ggtggtgatc ctaatttgtt atatcgaagc ttttatagga gaactccaga cttccttaca 11520
gaagctatag tacattcagt gtttgtgttg agctattata ctggtcacga tttacaagat 11580
aagctccagg atcttccaga tgatagactg aacaaattct tgacatgtgt catcacattt 11640
gataaaaatc ccaatgccga gtttgtaaca ttgatgaggg atccacaggc tttagggtct 11700
gaaaggcaag ctaaaattac tagtgagatt aatagattag cagtaacaga agtcttaagt 11760
atagccccaa acaaaatatt ttctaaaagt gcacaacatt atactaccac tgagattgat 11820
ctaaatgaca ttatgcaaaa tatagaacca acttaccctc atggattaag agttgtttat 11880
gaaagtttac ctttttataa agcagaaaaa atagttaatc ttatatcagg aacaaaatcc 11940
ataactaata tacttgaaaa aacatcagca atagatacaa ctgatattaa tagggctact 12000
gatatgatga ggaaaaatat aactttactt ataaggatac ttccactaga ttgtaacaaa 12060
gacaaaagag agttattaag tttagaaaat cttagtataa ctgaattaag caagtatgta 12120
agagaaagat cttggtcatt atccaatata gtaggagtaa catcgccaag tattatgttc 12180
acaatggaca ttaaatatac aactagcact atagccagtg gtataataat agaaaaatat 12240
aatgttaata gtttaactcg tggtgaaaga ggacccacca agccatgggt aggctcatcc 12300
acgcaggaga aaaaaacaat gccagtgtac aacagacaag ttttaaccaa aaagcaaaga 12360
gaccaaatag atttattagc aaaattagac tgggtatatg catccataga caacaaagat 12420
gaattcatgg aagaactgag tactggaaca cttggactgt catatgaaaa agccaaaaag 12480
ttgtttccac aatatctaag tgtcaattat ttacaccgtt taacagtcag tagtagacca 12540
tgtgaattcc ctgcatcaat accagcttat agaacaacaa attatcattt tgatactagt 12600
cctatcaatc atgtattaac agaaaagtat ggagatgaag atatcgacat tgtgtttcaa 12660
aattgcataa gttttggtct tagcctgatg tcggttgtgg aacaattcac aaacatatgt 12720
cctaatagaa ttattctcat accgaagctg aatgagatac atttgatgaa acctcctata 12780
tttacaggag atgttgatat catcaagttg aagcaagtga tacaaaagca gcacatgttc 12840
ctaccagata aaataagttt aacccaatat gtagaattat tcttaagtaa caaagcactt 12900
aaatctggat ctcacatcaa ctctaattta atattagtac ataaaatgtc tgattatttt 12960
cataatgctt atattttaag tactaattta gctggacatt ggattctgat tattcaactt 13020
atgaaagatt caaaaggtat ttttgaaaaa gattggggag aggggtacat aactgatcat 13080
atgttcatta atttgaatgt tttctttaat gcttataaga cttatttgct atgttttcat 13140
aaaggttatg gtaaagcaaa attagaatgt gatatgaaca cttcagatct tctttgtgtt 13200
ttggagttaa tagacagtag ctactggaaa tctatgtcta aagttttcct agaacaaaaa 13260
gtcataaaat acatagtcaa tcaagacaca agtttgcgta gaataaaagg ctgtcacagt 13320
tttaagttgt ggtttttaaa acgccttgat aatgctaaat ttaccgtatg cccttgggtt 13380
gttaacatag attatcaccc aacacacatg aaagctatat tatcttacat agatttagtt 13440
agaatggggt taataaatgt agataaatta accattaaaa ataaaaacaa attcaatgat 13500
gaattttaca catcaaatct cttttacatt agttataact tttcagacaa cactcatttg 13560
ctaacaaaac aaataagaat tgctaattca gaattagaag ataattataa caaactatat 13620
cacccaaccc cagaaacttt agaaaatatg tcattaattc ctgttaaaag taataatagt 13680
aacaaaccta aattttgtat aagtggaaat accgaatcta tgatgatgtc aacattctct 13740
agtaaaatgc atattaaatc ttccactgtt accacaagat tcaattatag caaacaagac 13800
ttgtacaatt tatttccaat tgttgtgata gacaagatta tagatcattc aggtaataca 13860
gcaaaatcta accaacttta caccaccact tcacatcaga catctttagt aaggaatagt 13920
gcatcacttt attgcatgct tccttggcat catgtcaata gatttaactt tgtatttagt 13980
tccacaggat gcaagatcag tatagagtat attttaaaag atcttaagat taaggacccc 14040
agttgtatag cattcatagg tgaaggagct ggtaacttat tattacgtac ggtagtagaa 14100
cttcatccag acataagata catttacaga agtttaaaag attgcaatga tcatagttta 14160
cctattgaat ttctaaggtt atacaacggg catataaaca tagattatgg tgagaattta 14220
accattcctg ctacagatgc aactaataac attcattggt cttatttaca tataaaattt 14280
gcagaaccta ttagcatctt tgtctgcgat gctgaattac ctgttacagc caattggagt 14340
aaaattataa ttgaatggag taagcatgta agaaagtgca agtactgttc ttctgtaaat 14400
agatgcattt taattgcaaa atatcatgct caagatgaca ttgatttcaa attagataac 14460
attactatat taaaaactta cgtgtgccta ggtagcaagt taaaaggatc tgaagtttac 14520
ttaatcctta caataggccc tgcaaatata cttcctgttt ttgatgttgt acaaaatgct 14580
aaattgatac tttcaagaac taaaaatttc attatgccta aaaaaactga caaggaatct 14640
atcgatgcag ttattaaaag cttaatacct ttcctttgtt accctataac aaaaaaagga 14700
attaagactt cattgtcaaa attgaagagt gtagttaatg gagatatatt atcatattct 14760
atagctggac gtaatgaagt attcagcaac aagcttataa accacaagca tatgaatatc 14820
ctaaaatggc tagatcatgt tttaaatttt agatcagctg aacttaatta caatcattta 14880
tacatgatag agtccacata tccttactta agtgaattgt taaatagttt aacaaccaat 14940
gagctcaaga agctgattaa aataacaggt agtgtgctat acaaccttcc caacgaacag 15000
tagtttaaaa tatcattaac aagtttggtc aaatttagat gctaacacat cattatatta 15060
tagttattaa aaaatataca aacttttcaa taatttagca tattgattcc aaaattatca 15120
ttttagtctt aaggggttaa ataaaagtct aaaactaaca attatacatg tgcattcaca 15180
acacaacgag acattagttt ttgacacttt ttttctcgt 15219
<210> 12
<211> 2166
<212> PRT
〈213〉 respiratory syncytial virus
<400> 12
Met Asp Pro Ile Ile Asn Gly Asn Ser Ala Asn Val Tyr Leu Thr Asp
1 5 10 15
Ser Tyr Leu Lys Gly Val Ile Ser Phe Ser Glu Cys Asn Ala Leu Gly
20 25 30
Ser Tyr Leu Phe Asn Gly Pro Tyr Leu Lys Asn Asp Tyr Thr Asn Leu
35 40 45
Ile Ser Arg Gln Ser Pro Leu Leu Glu His Met Asn Leu Lys Lys Leu
50 55 60
Thr Ile Thr Gln Ser Leu Ile Ser Arg Tyr His Lys Gly Glu Leu Lys
65 70 75 80
Leu Glu Glu Pro Thr Tyr Phe Gln Ser Leu Leu Met Thr Tyr Lys Ser
85 90 95
Met Ser Ser Ser Glu Gln Ile Ala Thr Thr Asn Leu Leu Lys Lys Ile
100 105 110
Ile Arg Arg Ala Ile Glu Ile Ser Asp Val Lys Val Tyr Ala Ile Leu
115 120 125
Asn Lys Leu Gly Leu Lys Glu Lys Asp Arg Val Lys Pro Asn Asn Asn
130 135 140
Ser Gly Asp Glu Asn Ser Val Leu Thr Thr Ile Lys Asp Asp Ile
145 150 155 160
Leu Ser Ala Val Glu Asn Asn Gln Ser Tyr Thr Asn Ser Asp Lys Ser
165 170 175
His Ser Val Asn Gln Asn Ile Thr Ile Lys Thr Thr Leu Leu Lys Lys
180 185 190
Leu Met Cys Ser Met Gln His Pro Pro Ser Trp Leu Ile His Trp Phe
195 200 205
Asn Leu Tyr Thr Lys Leu Asn Asn Ile Leu Thr Gln Tyr Arg Ser Asn
210 215 220
Glu Val Lys Ser His Gly Phe Ile Leu Ile Asp Asn Gln Thr Leu Ser
225 230 235 240
Gly Phe Gln Phe Ile Leu Asn Gln Tyr Gly Cys Ile Val Tyr His Lys
245 250 255
Gly Leu Lys Lys Ile Thr Thr Thr Thr Tyr Asn Gln Phe Leu Thr Trp
260 265 270
Lys Asp Ile Ser Leu Ser Arg Leu Asn Val Cys Leu Ile Thr Trp Ile
275 280 285
Ser Asn Cys Leu Asn Thr Leu Asn Lys Ser Leu Gly Leu Arg Cys Gly
290 295 300
Phe Asn Asn Val Val Leu Ser Gln Leu Phe Leu Tyr Gly Asp Cys Ile
305 310 315 320
Leu Lys Leu Phe His Asn Glu Gly Phe Tyr Ile Ile Lys Glu Val Glu
325 330 335
Gly Phe Ile Met Ser Leu Ile Leu Asn Ile Thr Glu Glu Asp Gln Phe
340 345 350
Arg Lys Arg Phe Tyr Asn Ser Met Leu Asn Asn Ile Thr Asp Ala Ala
355 360 365
Ile Lys Ala Gln Lys Asp Leu Leu Ser Arg Val Cys His Thr Leu Leu
370 375 380
Asp Lys Thr Val Ser Asp Asn Ile Ile Asn Gly Lys Trp Ile Ile Leu
385 390 395 400
Leu Ser Lys Phe Leu Lys Leu Ile Lys Leu Ala Gly Asp Asn Asn Leu
405 410 415
Asn Asn Leu Ser Glu Leu Tyr Phe Leu Phe Arg Ile Phe Gly His Pro
420 425 430
Met Val Asp Glu Arg Gln Ala Met Asp Ser Val Arg Ile Asn Cys Asn
435 440 445
Glu Thr Lys Phe Tyr Leu Leu Ser Ser Leu Ser Thr Leu Arg Gly Ala
450 455 460
Phe Ile Tyr Arg Ile Ile Lys Gly Phe Val Asn Thr Tyr Asn Arg Trp
465 470 475 480
Pro Thr Leu Arg Asn Ala Ile Val Leu Pro Leu Arg Trp Leu Asn Tyr
485 490 495
Tyr Lys Leu Asn Thr Tyr Pro Ser Leu Leu Glu Ile Thr Glu Asn Asp
500 505 510
Leu Ile Ile Leu Ser Gly Leu Arg Phe Tyr Arg Glu Phe His Leu Pro
515 520 525
Lys Lys Val Asp Leu Glu Met Ile Ile Asn Asp Lys Ala Ile Ser Pro
530 535 540
Pro Lys Asp Leu Ile Trp Thr Ser Phe Pro Arg Asn Tyr Met Pro Ser
545 550 555 560
His Ile Gln Asn Tyr Ile Glu His Glu Lys Leu Lys Phe Ser Glu Ser
565 570 575
Asp Arg Ser Arg Arg Val Leu Glu Tyr Tyr Leu Arg Asp Asn Lys Phe
580 585 590
Asn Glu Cys Asp Leu Tyr Asn Cys Val Val Asn Gln Ser Tyr Leu Asn
595 600 605
Asn Ser Asn His Val Val Ser Leu Thr Gly Lys Glu Arg Glu Leu Ser
610 615 620
Val Gly Arg Met Phe Ala Met Gln Pro Gly Met Phe Arg Gln Ile Gln
625 630 635 640
Ile Leu Ala Glu Lys Met Ile Ala Glu Asn Ile Leu Gln Phe Phe Pro
645 650 655
Glu Ser Leu Thr Arg Tyr Gly Asp Leu Glu Leu Gln Lys Ile Leu Glu
660 665 670
Leu Lys Ala Gly Ile Ser Asn Lys Ser Asn Arg Tyr Asn Asp Asn Tyr
675 680 685
Asn Asn Tyr Ile Ser Lys Cys Ser Ile Ile Thr Asp Leu Ser Lys Phe
690 695 700
Asn Gln Ala Phe Arg Tyr Glu Thr Ser Cys Ile Cys Ser Asp Val Leu
705 710 715 720
Asp Glu Leu His Gly Val Gln Ser Leu Phe Ser Trp Leu His Leu Thr
725 730 735
Ile Pro Leu Val Thr Ile Ile Cys Thr Tyr Arg His Ala Pro Pro Phe
740 745 750
Ile Lys Asp His Val Val Asn Leu Asn Glu Val Asp Glu Gln Ser Gly
755 760 765
Leu Tyr Arg Tyr His Met Gly Gly Ile Glu Gly Trp Cys Gln Lys Leu
770 775 780
Trp Thr Ile Glu Ala Ile Ser Leu Leu Asp Leu Ile Ser Leu Lys Gly
785 790 795 800
Lys Phe Ser Ile Thr Ala Leu Ile Asn Gly Asp Asn Gln Ser Ile Asp
805 810 815
Ile Ser Lys Pro Val Arg Leu Ile Glu Gly Gln Thr His Ala Gln Ala
820 825 830
Asp Tyr Leu Leu Ala Leu Asn Ser Leu Lys Leu Leu Tyr Lys Glu Tyr
835 840 845
Ala Gly Ile Gly His Lys Leu Lys Gly Thr Glu Thr Tyr Ile Ser Arg
850 855 860
Asp Met Gln Phe Met Ser Lys Thr Ile Gln His Asn Gly Val Tyr Tyr
865 870 875 880
Pro Ala Ser Ile Lys Lys Val Leu Arg Val Gly Pro Trp Ile Asn Thr
885 890 895
Ile Leu Asp Asp Phe Lys Val Ser Leu Glu Ser Ile Gly Ser Leu Thr
900 905 910
Gln Glu Leu Glu Tyr Arg Gly Glu Ser Leu Leu Cys Ser Leu Ile Phe
915 920 925
Arg Asn Ile Trp Leu Tyr Asn Gln Ile Ala Leu Gln Leu Arg Asn His
930 935 940
Ala Leu Cys Asn Asn Lys Leu Tyr Leu Asp Ile Leu Lys Val Leu Lys
945 950 955 960
His Leu Lys Thr Phe Phe Asn Leu Asp Ser Ile Asp Met Ala Leu Ser
965 970 975
Leu Tyr Met Asn Leu Pro Met Leu Phe Gly Gly Gly Asp Pro Asn Leu
980 985 990
Leu Tyr Arg Ser Phe Tyr Arg Arg Thr Pro Asp Phe Leu Thr Glu Ala
995 1000 1005
Ile Val His Ser Val Phe Val Leu Ser Tyr Tyr Thr Gly His Asp Leu
1010 1015 1020
Gln Asp Lys Leu Gln Asp Leu Pro Asp Asp Arg Leu Asn Lys Phe Leu
1025 1030 1035 1040
Thr Cys Val Ile Thr Phe Asp Lys Asn Pro Asn Ala Glu Phe Val Thr
1045 1050 1055
Leu Met Arg Asp Pro Gln Ala Leu Gly Ser Glu Arg Gln Ala Lys Ile
1060 1065 1070
Thr Ser Glu Ile Asn Arg Leu Ala Val Thr Glu Val Leu Ser Ile Ala
1075 1080 1085
Pro Asn Lys Ile Phe Ser Lys Ser Ala Gln His Tyr Thr Thr Thr Glu
1090 1095 1100
Ile Asp Leu Asn Asp Ile Met Gln Asn Ile Glu Pro Thr Tyr Pro His
1105 1110 1115 1120
Gly Leu Arg Val Val Tyr Glu Ser Leu Pro Phe Tyr Lys Ala Glu Lys
1125 1130 1135
Ile Val Asn Leu Ile Ser Gly Thr Lys Ser Ile Thr Asn Ile Leu Glu
1140 1145 1150
Lys Thr Ser Ala Ile Asp Thr Thr Asp Ile Asn Arg Ala Thr Asp Met
1155 1160 1165
Met Arg Lys Asn Ile Thr Leu Leu Ile Arg Ile Leu Pro Leu Asp Cys
1170 1175 1180
Asn Lys Asp Lys Arg Glu Leu Leu Ser Leu Glu Asn Leu Ser Ile Thr
1185 1190 1195 1200
Glu Leu Ser Lys Tyr Val Arg Glu Arg Ser Trp Ser Leu Ser Asn Ile
1205 1210 1215
Val Gly Val Thr Ser Pro Ser Ile Met Phe Thr Met Asp Ile Lys Tyr
1220 1225 1230
Thr Thr Ser Thr Ile Ala Ser Gly Ile Ile Ile Glu Lys Tyr Asn Val
1235 1240 1245
Asn Ser Leu Thr Arg Gly Glu Arg Gly Pro Thr Lys Pro Trp Val Gly
1250 1255 1260
Ser Ser Thr Gln Glu Lys Lys Thr Met Pro Val Tyr Asn Arg Gln Val
1265 1270 1275 1280
Leu Thr Lys Lys Gln Arg Asp Gln Ile Asp Leu Leu Ala Lys Leu Asp
1285 1290 1295
Trp Val Tyr Ala Ser Ile Asp Asn Lys Asp Glu Phe Met Glu Glu Leu
1300 1305 1310
Ser Thr Gly Thr Leu Gly Leu Ser Tyr Glu Lys Ala Lys Lys Leu Phe
1315 1320 1325
Pro Gln Tyr Leu Ser Val Asn Tyr Leu His Arg Leu Thr Val Ser Ser
1330 1335 1340
Arg Pro Cys Glu Phe Pro Ala Ser Ile Pro Ala Tyr Arg Thr Thr Asn
1345 1350 1355 1360
Tyr His Phe Asp Thr Ser Pro Ile Asn His Val Leu Thr Glu Lys Tyr
1365 1370 1375
Gly Asp Glu Asp Ile Asp Ile Val Phe Gln Asn Cys Ile Ser Phe Gly
1380 1385 1390
Leu Ser Leu Met Ser Val Val Glu Gln Phe Thr Asn Ile Cys Pro Asn
1395 1400 1405
Arg Ile Ile Leu Ile Pro Lys Leu Asn Glu Ile His Leu Met Lys Pro
1410 1415 1420
Pro Ile Phe Thr Gly Asp Val Asp Ile Ile Lys Leu Lys Gln Val Ile
1425 1430 1435 1440
Gln Lys Gln His Met Phe Leu Pro Asp Lys Ile Ser Leu Thr Gln Tyr
1445 1450 1455
Val Glu Leu Phe Leu Ser Asn Lys Ala Leu Lys Ser Gly Ser His Ile
1460 1465 1470
Asn Ser Asn Leu Ile Leu Val His Lys Met Ser Asp Tyr Phe His Asn
1475 1480 1485
Ala Tyr Ile Leu Ser Thr Asn Leu Ala Gly His Trp Ile Leu Ile Ile
1490 1495 1500
Gln Leu Met Lys Asp Ser Lys Gly Ile Phe Glu Lys Asp Trp Gly Glu
1505 1510 1515 1520
Gly Tyr Ile Thr Asp His Met Phe Ile Asn Leu Asn Val Phe Phe Asn
1525 1530 1535
Ala Tyr Lys Thr Tyr Leu Leu Cys Phe His Lys Gly Tyr Gly Lys Ala
1540 1545 1550
Lys Leu Glu Cys Asp Met Asn Thr Ser Asp Leu Leu Cys Val Leu Glu
1555 1560 1565
Leu Ile Asp Ser Ser Tyr Trp Lys Ser Met Ser Lys Val Phe Leu Glu
1570 1575 1580
Gln Lys Val Ile Lys Tyr Ile Val Asn Gln Asp Thr Ser Leu Arg Arg
1585 1590 1595 1600
Ile Lys Gly Cys His Ser Phe Lys Leu Trp Phe Leu Lys Arg Leu Asp
1605 1610 1615
Asn Ala Lys Phe Thr Val Cys Pro Trp Val Val Asn Ile Asp Tyr His
1620 1625 1630
Pro Thr His Met Lys Ala Ile Leu Ser Tyr Ile Asp Leu Val Arg Met
1635 1640 1645
Gly Leu Ile Asn Val Asp Lys Leu Thr Ile Lys Asn Lys Asn Lys Phe
1650 1655 1660
Asn Asp Glu Phe Tyr Thr Ser Asn Leu Phe Tyr Ile Ser Tyr Asn Phe
1665 1670 1675 1680
Ser Asp Asn Thr His Leu Leu Thr Lys Gln Ile Arg Ile Ala Asn Ser
1685 1690 1695
Glu Leu Glu Asp Asn Tyr Asn Lys Leu Tyr His Pro Thr Pro Glu Thr
1700 1705 1710
Leu Glu Asn Met Ser Leu Ile Pro Val Lys Ser Asn Asn Ser Asn Lys
1715 1720 1725
Pro Lys Phe Cys Ile Ser Gly Asn Thr Glu Ser Met Met Met Ser Thr
1730 1735 1740
Phe Ser Ser Lys Met His Ile Lys Ser Ser Thr Val Thr Thr Arg Phe
1745 1750 1755 1760
Asn Tyr Ser Lys Gln Asp Leu Tyr Asn Leu Phe Pro Ile Val Val Ile
1765 1770 1775
Asp Lys Ile Ile Asp His Ser Gly Asn Thr Ala Lys Ser Asn Gln Leu
1780 1785 1790
Tyr Thr Thr Thr Ser His Gln Thr Ser Leu Val Arg Asn Ser Ala Ser
1795 1800 1805
Leu Tyr Cys Met Leu Pro Trp His His Val Asn Arg Phe Asn Phe Val
1810 1815 1820
Phe Ser Ser Thr Gly Cys Lys Ile Ser Ile Glu Tyr Ile Leu Lys Asp
1825 1830 1835 1840
Leu Lys Ile Lys Asp Pro Ser Cys Ile Ala Phe Ile Gly Glu Gly Ala
1845 1850 1855
Gly Asn Leu Leu Leu Arg Thr Val Val Glu Leu His Pro Asp Ile Arg
1860 1865 1870
Tyr Ile Tyr Arg Ser Leu Lys Asp Cys Asn Asp His Ser Leu Pro Ile
1875 1880 1885
Glu Phe Leu Arg Leu Tyr Asn Gly His Ile Asn Ile Asp Tyr Gly Glu
1890 1895 1900
Asn Leu Thr Ile Pro Ala Thr Asp Ala Thr Asn Asn Ile His Trp Ser
1905 1910 1915 1920
Tyr Leu His Ile Lys Phe Ala Glu Pro Ile Ser Ile Phe Val Cys Asp
1925 1930 1935
Ala Glu Leu Pro Val Thr Ala Asn Trp Ser Lys Ile Ile Glu Trp
1940 1945 1950
Ser Lys His Val Arg Lys Cys Lys Tyr Cys Ser Ser Val Asn Arg Cys
1955 1960 1965
Ile Leu Ile Ala Lys Tyr His Ala Gln Asp Asp Ile Asp Phe Lys Leu
1970 1975 1980
Asp Asn Ile Thr Ile Leu Lys Thr Tyr Val Cys Leu Gly Ser Lys Leu
1985 1990 1995 2000
Lys Gly Ser Glu Val Tyr Leu Ile Leu Thr Ile Gly Pro Ala Asn Ile
2005 2010 2015
Leu Pro Val Phe Asp Val Val Gln Asn Ala Lys Leu Ile Leu Ser Arg
2020 2025 2030
Thr Lys Asn Phe Ile Met Pro Lys Lys Thr Asp Lys Glu Ser Ile Asp
2035 2040 2045
Ala Val Ile Lys Ser Leu Ile Pro Phe Leu Cys Tyr Pro Ile Thr Lys
2050 2055 2060
Lys Gly Ile Lys Thr Ser Leu Ser Lys Leu Lys Ser Val Val Asn Gly
2065 2070 2075 2080
Asp Ile Leu Ser Tyr Ser Ile Ala Gly Arg Asn Glu Val Phe Ser Asn
2085 2090 2095
Lys Leu Ile Asn His Lys His Met Asn Ile Leu Lys Trp Leu Asp His
2100 2105 2110
Val Leu Asn Phe Arg Ser Ala Glu Leu Asn Tyr Asn His Leu Tyr Met
2115 2120 2125
Ile Glu Ser Thr Tyr Pro Tyr Leu Ser Glu Leu Leu Asn Ser Leu Thr
2130 2135 2140
Thr Asn Glu Leu Lys Lys Leu Ile Lys Ile Thr Gly Ser Val Leu Tyr
2145 2150 2155 2160
Asn Leu Pro Asn Glu Gln
2165
权利要求:
Claims (11)
[1" claim-type="Currently amended] Isolated, recombinantly produced, attenuated, toxic attenuated human respiratory syncytia virus (RSV) subgroup B with at least one attenuating mutation in the RNA polymerase gene.
[2" claim-type="Currently amended] The method of claim 1 wherein at least one attenuating mutation in the RNA polymerase gene is selected from residues 353 (arginine → lysine), 451 (lysine → arginine), 1229 (aspartic acid → asparagine), 2029 (threonine → isoleucine) and A virus selected from the group consisting of nucleotide changes causing changes in amino acids selected from the group consisting of 2050 (asparagine → aspartic acid).
[3" claim-type="Currently amended] A vaccine comprising the attenuated RSV subgroup B according to claim 1, which has been isolated and recombinantly produced, and a physiologically acceptable carrier.
[4" claim-type="Currently amended] A vaccine comprising the attenuated RSV subgroup B according to claim 2, which has been isolated and recombinantly produced, and a physiologically acceptable carrier.
[5" claim-type="Currently amended] A method of immunizing a subject to induce protection against RSV subgroup B, comprising administering a vaccine according to claim 3 to the subject.
[6" claim-type="Currently amended] A method of immunizing a subject to induce protection against RSV subgroup B, comprising administering the vaccine of claim 4 to the subject.
[7" claim-type="Currently amended] At least one attenuation of the RNA polymerase gene, with at least one expression vector comprising at least one isolated nucleic acid molecule encoding the trans-acting N, P, L and M2 proteins of the virus required for encapsidation, transcription and replication A composition comprising a transcription vector comprising an isolated nucleic acid molecule encoding the genome or antigenome of RSV subgroup B with a flanking mutation, wherein upon expression an infectious attenuated virus is produced.
[8" claim-type="Currently amended] 8. The composition of claim 7, wherein the transcription vector comprises an isolated nucleic acid molecule encoding RSV subgroup B according to claim 2.
[9" claim-type="Currently amended] Infectious attenuated RSV, comprising culturing the host cell under conditions which transform or transfect the host cell using at least two vectors according to claim 7 and express these vectors together to produce an infectious attenuated virus. How to create subgroup B.
[10" claim-type="Currently amended] 10. The method of claim 9, wherein the virus is RSV subgroup B of claim 2.
[11" claim-type="Currently amended] RSV subgroup B sequence on (+) strand, 2B wild type strain (SEQ ID NO: 1), 18537 wild type strain (SEQ ID NO: 3), 2B33F vaccine strain (SEQ ID NO: 5), 2B20L vaccine strain (SEQ ID NO: 7) , An antigenomic message sense selected from the group consisting of 2B33F TS (+) return strain (SEQ ID NO: 9), and 2B20L TS (+) return strain (SEQ ID NO: 11), and its complementary genomic sequence Nucleic acid molecule.
类似技术:
公开号 | 公开日 | 专利标题
Wunner2017|The chemical composition and molecular structure of rabies viruses
Johnson et al.1987|Antigenic relatedness between glycoproteins of human respiratory syncytial virus subgroups A and B: evaluation of the contributions of F and G glycoproteins to immunity.
Castrucci et al.1992|Attenuation of influenza A virus by insertion of a foreign epitope into the neuraminidase.
RU2280690C2|2006-07-27|Recombinant influenza virus a
JP3816126B2|2006-08-30|Recombinant infectious non-segmented negative-strand RNA virus
US6333395B1|2001-12-25|Compositions for inhibition of membrane fusion-associated events, including human parainfluenza virus transmission
Caley et al.1997|Humoral, mucosal, and cellular immunity in response to a human immunodeficiency virus type 1 immunogen expressed by a Venezuelan equine encephalitis virus vaccine vector.
US6664066B2|2003-12-16|Modified Morbillivirus V proteins
Biacchesi et al.2004|Recombinant human metapneumovirus lacking the small hydrophobic SH and/or attachment G glycoprotein: deletion of G yields a promising vaccine candidate
US5290686A|1994-03-01|Expression of influenza a M2 protein in baculovirus
DK175500B1|2004-11-15|Composition for the protection of an animal or human from an infection caused by a respiratory syncytial virus and subunit vaccine formulation
KR100702523B1|2007-04-04|Production of attenuated parainfluenza virus vaccines from cloned nucleotide sequences
Teng et al.2001|Contribution of the respiratory syncytial virus G glycoprotein and its secreted and membrane-bound forms to virus replication in vitro and in vivo
Spriggs et al.1987|Expression of the F and HN glycoproteins of human parainfluenza virus type 3 by recombinant vaccinia viruses: contributions of the individual proteins to host immunity.
Durbin et al.1999|Mutations in the C, D, and V open reading frames of human parainfluenza virus type 3 attenuate replication in rodents and primates
US7709007B2|2010-05-04|Production of attenuated respiratory syncytial virus vaccines from cloned nucleotide sequences
AU2005203596C1|2009-12-10|Production of attenuated negative stranded RNA virus vaccines from cloned nucleotide sequences
Bukreyev et al.1997|Recombinant respiratory syncytial virus from which the entire SH gene has been deleted grows efficiently in cell culture and exhibits site-specific attenuation in the respiratory tract of the mouse.
Crowe Jr1995|Current approaches to the development of vaccines against disease caused by respiratory syncytial virus | and parainfluenza virus | A meeting report of the WHO Programme for Vaccine Development
US6022864A|2000-02-08|Nucleic acid respiratory syncytial virus vaccines
JP2008188022A|2008-08-21|Production of infectious respiratory syncytial virus from cloned nucleotide sequences
US5789229A|1998-08-04|Stranded RNA virus particles
ES2427139T3|2013-10-29|Recombinant measles viruses expressing epitopes of RNA virus antigens and use of recombinant viruses for the preparation of vaccine compositions
McGettigan et al.2003|Second-generation rabies virus-based vaccine vectors expressing human immunodeficiency virus type 1 gag have greatly reduced pathogenicity but are highly immunogenic
Collins et al.1999|Rational design of live-attenuated recombinant vaccine virus for human respiratory syncytial virus by reverse genetics
同族专利:
公开号 | 公开日
BR9812232A|2000-07-18|
CA2302867A1|1999-04-01|
WO1999015672A1|1999-04-01|
JP2001517448A|2001-10-09|
AU9389998A|1999-04-12|
CN1273603A|2000-11-15|
EP1015594A1|2000-07-05|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
法律状态:
1997-09-19|Priority to US5955297P
1997-09-19|Priority to US60/059,552
1998-09-15|Application filed by 윌리암 에이취 캘넌, 에곤 이 버그, 아메리칸사이아나미드컴파니
1998-09-15|Priority to PCT/US1998/019145
2001-04-16|Publication of KR20010030630A
优先权:
申请号 | 申请日 | 专利标题
US5955297P| true| 1997-09-19|1997-09-19|
US60/059,552|1997-09-19|
PCT/US1998/019145|WO1999015672A1|1997-09-19|1998-09-15|Attenuated respiratory syncytial viruses|
[返回顶部]